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Multiobjective feature selection for key quality characteristic identification
in production processes using a nondominated-sorting-based whale

optimization algorithm

An-Da Lia,∗, Zhen Heb

aSchool of Management, Tianjin University of Commerce, Tianjin 300134, China
bCollege of Management and Economics, Tianjin University, Tianjin 300072, China

Abstract

Identifying key quality characteristics (QCs) in production processes is essential for product quality control

and improvement. This paper proposes a multiobjective wrapper-based feature selection (FS) method for key

QC (KQC) identification on unbalanced production data using a novel modified nondominated-sorting-based

whale optimization algorithm (MNSWOA) and the ideal point method (IPM). In the proposed approach,

the FS problem is defined as maximizing the geometric mean (GM) measure and minimizing the feature

(QC) subset size. To solve the defined FS problem, MNSWOA is adopted first to find a set of candidate

solutions (feature subsets), and then IPM is adopted to select the final solution. In MNSWOA, a modified

fast nondominated sorting approach is proposed to adapt the single objective whale optimization algorithm

to the multiobjective scenario. Moreover, a uniform reference solution selection strategy and the mutation

operations are embedded in MNSWOA to improve its search performance. Experimental results on four

unbalanced production datasets show that the proposed FS method performs effectively and efficiently

for KQC identification. Further comparisons show that MNSWOA obtains better search performance than

benchmark multiobjective optimization methods, including a modified NSGA-II, SPEA2, MOEA/D, NSPSO

and CMDPSO.

Keywords: feature selection, whale optimization algorithm, multiobjective optimization, classification,

unbalanced data, quality improvement

1. Introduction

Modern production processes generally contain a large number of quality characteristics (QCs), including

process parameters, assembly parameters and part parameters (Lee and Thornton, 1996). In practice, not

all these QCs can be perfectly designed or controlled in the early production stages of products. Therefore,

Ihttps://doi.org/10.1016/j.cie.2020.106852
IIThis manuscript version is made available under a CC-BY-NC-ND 4.0 license.

∗Corresponding author.
Email addresses: adli@tjcu.edu.cn (An-Da Li), zhhe@tju.edu.cn (Zhen He)

Preprint submitted to Computers & Industrial Engineering October 27, 2020

https://doi.org/10.1016/j.cie.2020.106852
http://creativecommons.org/licenses/by-nc-nd/4.0/


selecting the key QCs (KQCs) that significantly affect the final product quality is an essential task for5

continuous product quality control and improvement (Peres and Fogliatto, 2018; Shang et al., 2014). With

the rapid improvement of data acquisition technologies, high dimensional production data collected from the

production lines appear more frequently in modern manufacturing industries, which lays foundation on the

data-driven KQC identification approaches (Li et al., 2020b; Yang et al., 2019). Nevertheless, the high data

dimensionality proposes significant challenges for traditional statistical methods, e.g., ANOVA or multiple10

linear regression methods (Pierre and Tuv, 2011).

Feature (variable) selection (FS) (Guyon and Elisseeff, 2003; Xue et al., 2016; Manochandar and Pun-

niyamoorthy, 2018; Li and Jiang, 2019) in machine learning and data mining contexts aims to select the key

input variables related to the output variable, i.e., the class label in a classification task, for high dimen-

sional data. A number of studies (Anzanello et al., 2009, 2012; Li et al., 2016, 2019, 2020a) have applied FS15

methods to KQC identification problems in recent years. In these studies, the QCs are treated as features

and the quality level (e.g., conforming or nonconforming) of products is treated as the class label.

From the perspective of optimization, FS can be defined as a multiobjective problem of maximiz-

ing/minimizing the classification accuracy/error and minimizing the feature subset size (Xue et al., 2013).

Some studies (Eroglu and Kilic, 2017; Mistry et al., 2017) adopted single objective evolutionary computation20

(EC) techniques to solve this problem. However, before applying the single objective EC techniques, the

two original optimization objectives should be integrated into one single objective, which is generally not

an easy task as much domain knowledge is required. To narrow this gap, multiobjective FS methods (Xue

et al., 2013; Li et al., 2016; Nguyen et al., 2016; Rosales-Prez et al., 2017) that adopt multiobjective EC

techniques as the optimizer for the multiobjective FS problem have been proposed. As a nature of the multi-25

objective approaches, the multiobjective FS methods find a set of nondominated solutions (feature subsets)

approximating the Pareto front. To reduce the number of solutions, multiobjective decision methods, e.g.,

the ideal point method (IPM) (Li et al., 2016, 2019), have been applied to further select the best solution

from the nondominated solutions. The limitation of the multiobjective FS problem defined above is that the

adopted feature importance measure, i.e., accuracy (or error), is a biased classification performance measure30

on the unbalanced data, which can lead to biased FS results. Therefore, other metrics (e.g., true positive

rate (TPR) and true negative rate (TNR) (Tan et al., 2014), geometric mean (GM) of TPR and TNR (Li

et al., 2019)) have been adopted in literature instead of accuracy to form FS selection problems.

Although EC-based FS methods have been widely studied, improving the optimization performance of

an EC technique is always an essential task, since the search space of FS problems expands dramatically35

with the increase of data dimensionality (i.e., the number of features). Whale optimization algorithm

(WOA) (Mirjalili and Lewis, 2016; Elaziz and Mirjalili, 2019) is a recently proposed EC technique inspired

by the hunting behavior of humpbacks. It has been successfully applied to many optimization problems

including FS (Mafarja and Mirjalili, 2017, 2018). WOA adopts three strategies (i.e., encircling prey, spiral
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position updating and search for prey) with adequate exploration and exploitation capabilities to update40

solutions during the optimization process. It has the advantages of fast convergence speed, a small number

of parameters and easy implementation. Thus, for the FS problems that have a large solution space, WOA

bears the capability of quickly reducing the irrelevant or redundant features to find a desirable feature

subset. However, most existing WOA-based FS methods are still based on the single objective optimization

scheme, which motivates us to develop a multiobjective WOA for FS.45

In this paper, we develop a FS method (named MNSWOA-IPM) based on a multiobjective WOA for

KQC identification in production processes. In this method, FS (KQC identification) is modeled as a

multiobjective problem of maximizing GM and minimizing the feature subset size as suggested by Li et al.

(2019). The GM measure is used instead of accuracy for feature importance evaluation since the production

data are unbalanced, i.e., the number of instances (products) belong to different classes (product quality50

levels) differs substantially. To solve the defined multiobjective FS problem, a modified nondominated-

sorting-based WOA (MNSWOA) is developed to obtain a set of nondominated solutions (i.e., feature/QC

subsets), from which IPM is used to select the final solution (KQC set). The main contribution of this

paper is that several strategies are adopted in MNSWOA which adapts WOA to an effective multiobjective

optimization method. First, a modified fast nondominated sorting approach is proposed for MNSWOA to55

rank solutions in the multiobjective scenario. Compared with the traditional fast nondominated sorting

approach, this sorting approach enhances the swarm diversity by modifying the ranks of duplicate solutions

in the swarm. Second, as WOA needs a reference solution to update other solutions in the swarm at each

iteration, we propose a uniform selection strategy that uniformly selects the reference solution for MNSWOA

in the multiobjective scenario. Finally, mutation operations are conducted on the solutions in the swarm60

to improve the global search ability of MNSWOA. The experimental results on four unbalanced production

datasets show that the proposed MNSWOA-IPM method obtains competitive KQC identification results.

Further comparisons show that MNSWOA obtains better search performance than several representative

multiobjective EC techniques for the defined FS problem.

The organization for the following parts of this paper is as follows. Section 2 provides the literature65

review on FS methods. Section 3 briefly describes the standard single objective WOA, the multiobjective

decision method IPM and the definition of the KQC identification problem. Section 4 proposes the FS

method MNSWOA-IPM. Section 5 explains the experimental design. Section 6 presents the experimental

results and discussions. Section 7 further compares the search performance between MNSWOA and existing

multiobjective EC techniques. Conclusions and future research interests are introduced in Section 8.70
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2. Literature review

FS can be divided into filter and wrapper approaches according to the feature importance evaluation

strategies adopted (Xue et al., 2016). Filters evaluate features using the measures based on distance (Robnik-

Šikonja and Kononenko, 2003), information theory (Peng et al., 2005; Yan and Jia, 2019; Yu and Liu,

2004), rough set theory (Zouache and Abdelaziz, 2018), etc. Wrappers evaluate features according to75

their classification performance on the instances, which requires a learning algorithm. Wrappers cost more

computational time than filters as building a learning model is generally more time consuming than building

a filter measure. Meanwhile, wrappers can generally produce better classification results than filters since

they use a more straightforward way (i.e., classification performance) to evaluate the feature importance.

From the perspective of optimization, wrapper-based FS methods can be categorized into single objective80

and multiobjective approaches. The single objective approach usually defines FS as a single objective

problem of maximizing the classification performance (e.g., accuracy) of feature subsets. Sequential forward

selection (SFS) and sequential backward selection (SBS) (Kohavi and John, 1997) are two typical heuristic

search strategies for the single objective FS problem. As FS has shown to be an NP-hard problem (Amaldi

and Kann, 1998), EC techniques, e.g., genetic algorithms (GAs) (Oh et al., 2004; Min et al., 2006) and85

particle swarm optimization (PSO) (Xue et al., 2014b; Zhang et al., 2014), have also been widely used as

the optimizer due to their good global search ability. In comparison, the multiobjective approach usually

defines FS as a multiobjective problem of maximizing the classification performance and minimizing the

feature subset size. The multiobjective approach has a better capability to obtain a concise learning model

than the single objective one since reducing the number of selected features is explicitly defined as one90

optimization objective.

The multiobjective EC techniques have been increasingly applied to FS in recent years. The recently

proposed multiobjective EC-based FS methods in literature are summarize in Table 1, which can help us gain

a better understanding of the commonalities and differences among these methods. For balanced data, most

studies have used accuracy/error to measure the classification performance and defined the two FS objectives95

as maximizing/minimizing the accuracy/error and minimizing the feature subset size. Various multiobjective

EC techniques have been applied to optimize the two objectives. Nondominated sorting genetic algorithm II

(NSGA-II) (Deb et al., 2002) is one of the most popular multiobjective evolutionary algorithms (MOEAs),

which adopts a fast nondominated sorting approach to rank solutions and a crowding distance calculation

method to maintain the population diversity. It has been widely used as the optimizer for FS applications100

including radial basis function neural networks (Guilln et al., 2009), hybrid fault diagnosis of gearbox (Li

et al., 2011) and KQC identification (Li et al., 2016). In particular, Li et al. (2016) proposed a FS method for

KQC identification using NSGA-II and IPM. The IPM is used to select the most desirable solution from the

nondominated solutions found by NSGA-II. Besides NSGA-II, Rosales-Prez et al. (2017) proposed a novel
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MOEA named evolutionary multiobjective model and instance selection (EMOMIS) to simultaneously select105

features and instances for support vector machines (SVMs). The multiobjective PSO (MOPSO) methods

(Xue et al., 2013; Nguyen et al., 2016; Amoozegar and Minaei-Bidgoli, 2018) have also been widely used for

FS. Xue et al. (2013) proposed two MOPSO-based FS methods called CMDPSOFS and NSPSOFS, based

on the two PSO optimizers, CMDPSO and NSPSO. The results have shown that CMDPSOFS obtains

better FS results than the three typical MOEAs, including NSGA-II, SPEA2 and PEAS. Nguyen et al.110

(2016) proposed a MOPSO method named ISRPSO for FS, where several local search operators were used

to improve the search performance. The results have shown that ISRPSO obtains better FS results than

CMDPSOFS, whereas it takes more computational time since the local search process needs additional time.

Amoozegar and Minaei-Bidgoli (2018) proposed a MOPSO method named HMPSOFS for FS, which adopts

a refining process to perform the local search to update the nondominated solutions. Moreover, FS methods115

based on the multiobjective differential evolution (DE) (Xue et al., 2014a) and multiobjective artificial bee

colony (ABC) (Hancer et al., 2018; Zhang et al., 2019) have been proposed in recent years.

For unbalanced data, measuring the classification performance using accuracy (or error) may lead to

biased FS results, since the majority class instances have a much higher impact on the accuracy (error) rate

than the minority class instances. However, the classification accuracy (error) on the minority class is as120

critical as, or even more critical than that on the majority class (Bhowan et al., 2013). For example, in a

quality control scenario, whether the defects (minority class instances) can be accurately detected is more

critical than the detection of conforming products (majority class instances).

To address the data imbalance problem, alternative classification measures are used instead of accuracy

to build multiobjective EC-based FS methods. The main consideration using these measures is giving the125

minority class instances a higher weight while measuring the classification performance. Pacheco et al.

(2013); Huang et al. (2010) and Tan et al. (2014) adopted TPR and TNR (Type I and II errors) to form

the multiobjective FS problems on unbalanced data, where NSGA-II (Pacheco et al., 2013; Huang et al.,

2010) and the modified micro-genetic algorithm (MmGA) (Tan et al., 2014) are used as the optimizers.

Ekbal and Saha (2012) proposed a NSGA-II based FS method using precision and recall measures. de la130

Hoz et al. (2014) and Zhu et al. (2017) adopted the Jaccard’s coefficients on different classes to build the

multiobjective FS problems.

Adopting the classification performance measures such as TPR & TNR, recall & precision and Jaccard’s

coefficients can substantially improve the FS performance on unbalanced data. However, compared with

accuracy, adopting these measures actually increases the number of objectives to be optimized. As shown135

by Hughes (2005) and Ishibuchi et al. (2008), the performance of a multiobjective EC technique decreases as

the number of objectives increases. To reduce the number of objectives as well as addressing the unbalanced

data, Kozodoi et al. (2019); Li et al. (2019, 2020a) adopted integrated classification performance measures

in building multiobjective FS methods. Specifically, Kozodoi et al. (2019) proposed a profit-driven FS
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Table 1: Summary of multiobjective EC techniques for FS.
Literature Optimization approach Optimization objectives Considering

data imbalance
Application

Guilln et al. (2009) NSGA-II Error rate−, Feature subset
size−

No Radial basis function
neural networks

Li et al. (2011) NSGA-II Error rate−, Feature subset
size−

No Hybrid fault diagno-
sis of gearbox

Li et al. (2016) Modified NSGA-II (MNSGAII) Accuracy+, Feature subset size− No KQC identification

Rosales-Prez et al. (2017) EMOMIS Accuracy+, Reduction rate+ No Feature and instance
selection for SVM

Xue et al. (2013) CMDPSOFS, NSPSOFS Error rate−, Feature subset
size−

No General classification
problems

Nguyen et al. (2016) ISRPSO Error rate−, Feature subset
size−

No General classification
problems

Amoozegar and Minaei-Bidgoli
(2018)

HMPSOFS Error rate−, Feature subset
size−

No General classification
problems

Xue et al. (2014a) Multiobjective DE (DEMOFS) Error rate−, Feature subset
size−

No General classification
problems

Hancer et al. (2018) Bin-MOABC, Num-MOABC Error rate−, Feature subset
size−

No General classification
problems

Zhang et al. (2019) Two-archive multiobjective
ABC (TMABC-FS)

Error rate−, Cost of features− No General classification
problems

Pacheco et al. (2013) NSGA-II Type I and II errors− Yes Discriminant analysis
in two-class classifica-
tion

Huang et al. (2010) NSGA-II Accuracy+, TPR+, TNR+ Yes Customer churn pre-
diction in telecommu-
nications

Tan et al. (2014) Modified micro-genetic algo-
rithm (MmGA)

TPR+, TNR+, Feature subset
size−

Yes Feature selection for
neural network mod-
els

Ekbal and Saha (2012) NSGA-II Precision+, Recall+ Yes Named entity recog-
nition

de la Hoz et al. (2014) NSGA-II Jaccards coefficients+ Yes Network anomaly de-
tection

Zhu et al. (2017) Improved NSGA-III (I-NSGA-
III)

Jaccards coefficients+ Yes Intrusion detection

Kozodoi et al. (2019) NSGA-II Expected maximum profit+,
Feature subset size−

Yes Credit scoring

Li et al. (2019, 2020a) IDMS, GADMS GM+, Feature subset size− Yes KQC identification

+ denotes to be maximized and − denotes to be minimized.

method using NSGA-II for credit scoring. In this method, the confusion matrix with costs is used for140

calculating the profits of feature subsets. Since the classification accuracy of the minority class instances is

given a higher weight when calculating the profits, the data imbalance problem is handled. Li et al. (2019)

proposed an improved direct multisearch (IDMS) based FS method for KQC identification. Similarly, Li

et al. (2020a) proposed a FS method based on a hybrid optimization method named GADMS that combines

a GA and direct multisearch for KQC identification. In these two methods, the GM of TPR and TNR is145

used to measure the classification performance of feature subsets. Since a low value of either TPR or TNR

significantly decreases the GM value, GM is an effective classification performance measure for unbalanced

data.
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3. Preliminaries

This section briefly introduces the single objective WOA, IPM and the KQC identification problem,150

which are the basic concepts of the proposed FS (KQC identification) method in this paper.

3.1. Whale optimization algorithm (WOA)

WOA (Mirjalili and Lewis, 2016) is a swarm-based optimization method inspired by the hunting behavior

of humpback whales, i.e., a swarm of humpbacks changes their positions (solutions) hunting for preys. To

be specific, WOA adopts three solution updating strategies, i.e., encircling prey, spiral position updating155

and search for prey, mimicking the hunting behavior of whales. Given the swarm size N and the solution

dimensionality D, the position of whale i at the tth iteration can be denoted by Xt
i = (xti,1, x

t
i,2, ..., x

t
i,D),

i = 1, ..., N . Then, the three solution updating strategies can be depicted as follows.

3.1.1. Encircling prey

The encircling prey strategy updates whale i’s (i = 1, ..., N) position from Xt
i to X̄

t
i as160

X̄
t
i = X∗t −Ai · |Ci ·X∗t −Xt

i|, (1)

where X∗t (called reference solution in this paper) is the best position obtained at the tth iteration, Ai ·

|Ci ·X∗t −Xt
i| decides the step length of the encircling prey, and | • | means calculating the absolute value

for each element in the vector •. Ai and Ci are two random values obtained as

Ai = 2at · ri − at, (2)

Ci = 2 · r′i, (3)

where ri and r′i denote two random values in [0, 1] from the uniform distribution, and at = 2− 2t/Tmax is a165

parameter linearly decreasing from 2 to 0 during the iterations, which means that whales gradually narrow

the encircling scope.

3.1.2. Spiral position updating

The spiral position updating strategy updates whale i’s (i = 1, ..., N) position from Xt
i to X̄

t
i as

X̄
t
i = D′ · ebli · cos(2πli) + X∗t, (4)

where D′ = |X∗t −Xt
i| is the distance vector between position Xt

i and the reference position X∗t, li is a170

random value in [−1, 1], and b is a user-defined parameter whose default value is 1.
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3.1.3. Search for prey

The search for prey strategy is adopted in WOA to enhance the global search ability. It updates whale

i’s (i = 1, ..., N) position from Xt
i to X̄

t
i as

X̄
t
i = Xt

rand −Ai · |Ci ·Xt
rand −Xt

i|, (5)

where Xt
rand is a position (solution) randomly selected from the swarm, and Ai and Ci are obtained by175

Eqs. (2) and (3). It can be seen that the only difference between the search for prey strategy and the

encircling prey strategy is that different reference solutions (i.e., X∗t and Xt
rand) are used to update the

whale’s position.

3.1.4. Overall WOA procedure

WOA integrates the three solution updating strategies mentioned above to evolve new solutions. At each180

iteration, one of the three strategies is selected to update the position (solution) for a whale. Considering

whale i, a random number pi ∈ [0, 1] is first generated to decide whether the spiral position updating strategy

is conducted (pi ≥ 0.5) or not (pi < 0.5). If pi < 0.5, then the absolute value |Ai| is used to decide the

whether the encircling prey strategy (|Ai| < 1) or the search for prey strategy (|Ai| ≥ 1) is chosen to update

the position.185

3.2. Ideal point method (IPM)

IPM is a widely used multiobjective decision method that selects one best compromise solution from a

set of candidate solutions (Freimer and Yu, 1976). In IPM, an ideal point is first defined in the objective

space, and then the solution (in the candidate set) with the minimum distance to the ideal point is selected

as the best compromise solution. For the FS problem, Li et al. (2016) applied IPM to select the final feature190

subset from a set of nondominated solutions (candidate feature subsets) found by NSGA-II.

Let Ω be the set of candidate solutions (feature subsets) found by a multiobjective approach, x ∈ Ω

be a solution in the set, and fi(x), i = 1, ...,M be the objective function values (M denotes the number

of objectives). Then, the selection process (Li et al., 2016) for the best compromise solution (final feature

subset) using IPM can be briefly described as 3 steps. First, the ith objective function value fi(x) for each195

solution x ∈ Ω is normalized as

fNi (x) = (fi(x)− fi(x))/σ(fi(x)), i = 1, ...,M (6)

where fi(x) and σ(fi(x))) are the mean and standard deviation of the ith objective function value for

8



solutions in Ω. Second, the ideal point is defined as (f∗1 ,..., f∗M ), where

f∗i = min
x∈Ω

fNi (x), i = 1, ...,M. (7)

Finally, the best compromise solution x∗ with the minimum Euclidean distance to the ideal point is obtained

as200

x∗ = arg min
x∈Ω

√√√√ M∑
i=1

(fNi (x)− f∗i )2. (8)

3.3. The KQC identification problem

Let a dataset collected from production processes be ΘM×(D+1), which contains M instances (products),

a set F = {F1, F2, ..., FD} of features (QCs), and one class label (the quality level indicator) C ∈ {−1, 1},

where C = −1 indicates the majority class (e.g., the normal quality) and C = 1 indicates the minority

class (e.g., the premium quality). Then, KQC identification can be defined as a FS problem that selects a205

set Fs ⊆ F of features with a powerful predictive ability of the product quality while reducing as many as

possible of irrelevant or redundant features .

In this paper, we model the FS task as a multiobjective optimization problem that maximizes the

classification performance and minimizes the feature subset size based on the wrapper framework. GM is an

appropriate measure to evaluate the classification performance on the unbalanced production data because210

either a low value of TPR or TNR significantly decreases the GM value. As suggested by Li et al. (2019),

in this paper, we use GM to measure the classification performance and define the FS (KQC identification)

problem as

min {f1(Fs) = 1−GM(Fs); f2(Fs) = |Fs|}

s.t. Fs ⊆ F
, (9)

where GM(Fs) denotes the GM value obtained by Fs and |Fs| denotes the size of Fs, i.e., the number of

features in Fs. To evaluate the GM value of a feature subset, we use inner 5-fold cross validation (CV) on215

the training set as suggested by Kohavi and John (1997).

4. Proposed FS approach

In this section, a two-phase optimization method named MNSWOA-IPM is proposed to solve the FS

problem defined in Eq. (9). In MNSWOA-IPM, MNSWOA is first proposed to find a set of nondominated

solutions and then IPM (see Section 3.2) is used to select the most desirable solution (final feature subset)220

from the nondominated solutions. The details of MNSWOA are given as follows.
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Algorithm 1: Procedure of MNSWOA.

Input: Training set with a set F of features, swarm size N , maximum number of iterations Tmax ;
Output: A set Ω of nondominated solutions ;

/* Initialize iteration counter t and swarm St, where Xti (i = 1, ..., N) denotes whale

i’s position (solution). */

1 t← 0, St ← {Xt
1,X

t
2, ...,X

t
N} ;

2 Evaluate the objective function values of each solution in St ;
3 Sort solutions in St with the modified fast nondominated sorting (see Section 4.3) approach ;
4 while t < Tmax do
5 P← St ;

6 for each Xt
i ∈ St do

7 Ai ← Using Eq. (2) ;
8 pi ← rand() ; /* rand() denotes a random value in [0, 1] */

9 Select a reference solution X∗t from P with the uniform selection (see Section 4.4) strategy ;
10 if pi < 0.5 then
11 if |Ai| < 1 then
12 Update Xt

i using Eq. (1) ; /* Encircling prey */

13 else
14 Update Xt

i using Eq. (5) ; /* Search for prey */

15 end

16 else
17 Update Xt

i using Eq. (4) ; /* Spiral position updating */

18 end

19 end
20 Conduct mutation operations (see Section 4.5) on solutions in St ;
21 Evaluate the objective function values of each solution in St ;
22 Sc ← P ∪ St ;
23 Sort solutions in Sc with the modified fast nondominated sorting (see Section 4.3) approach;
24 St+1 ← The first N solutions in the sorted Sc ;
25 t← t+ 1 ;

26 end
27 return Ω← nondominated solutions in St ;

4.1. Overall procedure of MNSWOA

The procedure of MNSWOA is shown in Algorithm 1, which includes several key points. First, to

address the multiobjective FS problem, the modified fast nondominated sorting approach for improving the

swarm diversity is proposed to rank solutions (lines 3 and 23). Second, the solution updating strategies225

(lines 10 to 18) in WOA are adopted as the main mechanism to update solutions during the evolutionary

process of MNSWOA. Third, different from the single objective problems, multiobjective ones generally

have a set of best (nondominated) solutions. Therefore, the uniform selection strategy (line 9) is proposed

to select the reference solution X∗t for the encircling prey and spiral position updating strategies. Fourth,

to further enhance the global search ability, mutation operations (line 20) are conducted on the solutions230

in the swarm. Finally, MNSWOA adopts an elitism strategy similar to NSGA-II (Deb et al., 2002), where
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the best N solutions from the union (i.e., P∪ St) of parent and updated solutions are kept for the following

iteration (line 24). In the following parts, the key elements of MNSWOA are described in more detail.

4.2. Solution encoding and initialization

In this paper, each solution (a whale’s position) in the swarm is encoded as a real-valued vector X =235

(x1, x2, ..., xD), where D is the number of original features (QCs), and xj ∈ [−1, 1] (j = 1, 2, ..., D) denotes

whether the jth feature is selected by X. Specifically, xj > 0 denotes the jth feature is selected and xj ≤ 0

denotes the jth feature is eliminated. Note that if xj is updated to be a value larger than 1 we amend it to

1, else if it is updated to be a value smaller than −1 we amend it to −1. To initialize the swarm, the random

initialization method is used, where each element xj in a solution X is set as a random value in [−1, 1].240

4.3. Modified fast nondominated sorting approach

The fast nondominated sorting approach proposed by Deb et al. (2002) is one of the most commonly used

solution ranking method in multiobjective EC techniques. This approach iteratively selects and eliminates

nondominated solutions from the population (swarm) to rank solutions. Finally, each solution Xi is assigned

to a nondomination rank Rank(Xi) ≥ 1 which denotes the nondominated front the solution lies on. A smaller245

rank value denotes a better fitness of the solution. However, the traditional fast nondominated sorting

approach is not able to identify and reduce the duplicate solutions in the population (Li et al., 2016). This

can lead to the result that a large number of high quality but redundant solutions exist in the swarm during

the evolutionary process, which reduces the diversity of population. To solve this problem, a modified sorting

approach (Li et al., 2016) is proposed to detect and reduce the duplicate solutions in the population. However,250

this sorting approach may not work well on real-coded solutions for detecting the duplicate solutions. For

example, the real-coded solutions Xa = (−0.5, 0.5, 1,−0.2) and Xb = (−0.2, 0.5, 0.5,−0.2) actually refer to

the same feature subset. Nevertheless, the sorting approach proposed by Li et al. (2016) cannot identify

these two repeated solutions, since in this approach two solutions are considered to be duplicate only when

the two solutions are exactly the same (i.e., Xa = Xb in the given example). Therefore, the sorting approach255

(Li et al., 2016) should be further modified for MNSWOA which adopts real-coded solutions.

In this paper, we propose a modified fast nondominated sorting approach for MNSWOA. The procedure

of the proposed sorting approach is shown in Algorithm 2. First, we use the traditional fast nondominated

sorting approach (Deb et al., 2002) to assign a nondomination rank to each solution in the combined swarm

Sc. The solutions are sorted according to the assigned ranks in ascending order. Second, we propose a260

process to increase (modify) the nondomination ranks of the duplicate solutions in the combined swarm,

and then resort the solutions based on the modified ranks (see lines 4 to 11). Since a lower nondomination

rank denotes a better performance of a solution, this process lowers the fitnesses of the duplicate solutions.

As shown in Algorithm 1 (line 24), the first (best) N solutions in the combined swarm Sc are always kept
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Algorithm 2: Procedure of the modified fast nondominated sorting approach.

Input: Swarm Sc = {X1,X2, ...,XNc}, the swarm size N ;
Output: A set Ssorted of sorted solutions ;

1 Ssorted ← ∅, Sr ← ∅ ;
2 S′ ← Sort solutions in Sc with the traditional fast nondominated sorting approach ;
3 rmax ← Maximum nondomination rank of solutions in S′ ;
4 for i← 1 to N c do
5 if Decode(Xi) ∈ Decode(Ssorted) then

/* If feature subset Decode(Xi) is redundant with any feature subset in

Decode(Ssorted), modify Xi’s rank Rank(Xi). (Decode(Xi) denotes the feature

subset decoded from solution Xi, and Decode(Ssorted) denotes the set of

feature subsets decoded from Ssorted.) */

6 Rank(Xi)← Rank(Xi) + rmax ;
7 Sr ← Sr ∪ {Xi} ;

8 else
9 Ssorted ← Ssorted ∪ {Xi} ;

10 end

11 end
12 Ssorted ← Ssorted ∪ Sr ;
13 rn ← The nondomination rank of the Nth solution in Ssorted ;
14 Ssorted ← Resort solutions in Ssorted whose nondomination ranks equal rn in terms of the objective

function f2 in ascending order ;
15 return Ssorted ;

for the next iteration, this nondomination rank increasing process lowers the probabilities of the duplicate265

solutions to be added to the next iteration. Thus, the duplicate solutions in the swarm of the next iteration

are reduced compared with the situation that does not adopt the nondomination rank increasing process,

which improves the swarm diversity. Finally, to distinguish the goodness of either two solutions, a criterion

should be further defined to compare the solutions on the same nondominated front. In this paper, we use

the objective function f2 (feature subset size) as the criterion. In other words, for solutions on the same270

nondominated front we prefer the solutions with fewer selected features to be added to the next iteration to

improve the feature reduction capability of the algorithm. As shown in Algorithm 2 (line 14), solutions on

the rnth nondominated front is sorted according to objective function f2.

4.4. Uniform selection of the reference solution

The encircling prey and spiral position updating strategies of MNSWOA require a reference solution275

X∗t to update solutions. The reference solution is the best solution obtained so far in the single objective

scenario. In the multiobjective scenario, each nondominated solution can be a candidate of the reference

solution. Therefore, it is required to propose a proper reference solution selection strategy for encircling

prey and spiral position updating strategies in the MNSWOA method.

Essentially, the encircling prey and spiral position updating strategies can be seen as searching in the280
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space around the selected reference solution. Therefore, to guarantee stable and effective optimization

performance, it is preferred that all nondominated solutions are uniformly selected as the reference. To

achieve this goal, we propose the uniform selection strategy. This strategy adopts a parameter η for each

solution in the swarm that records the number of times the solution being selected as the reference. The

nondominated solution (whose nondomination rank equals 1) with the minimum η value is always selected285

as the reference solution (if more than one solution matches the condition, randomly select one from the

matched solutions). The parameter η for a solution is added by 1 every time it is selected as the reference.

4.5. Mutation operations

In WOA, the search for prey strategy is designed to enhance the global search ability, where a solution

is updated by exchanging information with another solution randomly selected in the swarm. However, as290

one nature of the swarm-based EC techniques, all solutions in the swarm tend to be similar during the

evolutionary process, which limits the global search ability of the search for prey strategy. In this paper,

to further improve the global search ability of MNSWOA, the mutation operations are conducted on the

solutions in the swarm after the three WOA-based solution updating strategies. Let X = (x1, x2, ..., xD) be

a solution and jm be a random integer between 1 and D. Then X mutates to X′ = (x′1, x
′
2, ..., x

′
D) where295

each element xj (j = 1, 2, ..., D) is

x′j =

 −xj , j = jm

xj , j 6= jm
. (10)

According to the encoding strategy of MNSWOA, a mutation operation changes the state that the jmth

feature is selected or not. To balance the global and local search abilities, we set the mutation rate pm = 0.5,

meaning that each solution in the swarm has a probability of 0.5 to mutate.

4.6. Time complexity analysis300

The time complexity of an EC technique is composed of two parts, the objective function evaluation

process and the evolutionary process. In most real world optimization applications, the time complexity of

the objective function evaluation process is much lower than that of the evolutionary process, and thus can

be neglected when analyzing the time complexity. However, evaluating the objective functions is very time

consuming in an EC-based wrapper method, since a learning algorithm is involved in the evaluation process305

of objective functions. Moreover, the evaluation time varies on different solutions, since it is affected by the

data dimensionality indicated by the solution (feature subset). Because the time complexity of the objective

function evaluation is problem-related and is hard to be measured in a wrapper-based FS method, in the

following paragraph we will analyze the time complexity of MNSWOA without considering the objective

function evaluation process.310
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According to Algorithm 1, the time complexity of MNSWOA at each iteration is governed by the modified

fast nondominated sorting approach. The time complexity of this sorting approach is O(N2) +O(ND) (see

Appendix A), which shows that the complexity is decided by the swarm size N and the number of original

features D. Compared with NSGA-II, which uses the traditional fast nondominated sorting approach,

MNSWOA has a similar time complexity if D ≤ N , and a higher time complexity if D > N . This means315

that our method is not as time efficient as NSGA-II if the number of features is much larger than the swarm

size. However, since the number of features of the production datasets in the experiments is smaller than

or similar to the swarm size, our method and NSGA-II have similar efficiency in this paper.

As mentioned above, evaluating the objective functions in a wrapper-based FS approach is time con-

suming. Thus, in this paper, we further adopt a caching strategy to reduce the computational time of320

the objective function evaluation process in MNSWOA. Specifically, a cache is used to store the evaluated

solutions and their objective function values. During the evolutionary process, the objective function values

of a solution are directly obtained from the cache if the solution has already been evaluated, or the common

wrapper-based objective function evaluation process is conducted.

5. Experimental design325

This section presents the details of the experimental design including datasets, benchmark methods,

experimental configuration and performance metrics.

5.1. Datasets

Four datasets, i.e., LATEX, ADPN, SPIRA and PAPER, collected from production processes are used

in the experiments. LATEX, ADPN and SPIRA were first used by Gauchi and Chagnon (2001) in FS for330

regression. LATEX was collected from emulsion polymerisation batch operations of latex production, ADPN

was collected from the adiponitrile production process, and SPIRA was collected from the fermentation

process of an antibiotic production. In these datasets, production process parameters, such as temperatures,

concentrations and pressures are the QCs. PAPER was first used by Wold et al. (2001) for validating

the partial least squares regression tools. It was collected from the process of newspapers and magazines335

recycling, and the QCs include concentration and temperature measures. Anzanello et al. (2009) divided

the instances in the four datasets into two classes, the premium quality (the minority class) and the regular

quality (the majority class), in terms of the threshold of the quality indication variable y provided by Gauchi

and Chagnon (2001) and Wold et al. (2001). So, the datasets are adapted to the classification problems

addressed in this paper. Table 2 shows the details of the four datasets.340
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Table 2: Details of the production datasets.

Dataset
Number of
instances

Number of
minority class instances

Number of
majority class instances

Number of
features (QCs)

LATEX 262 78 184 117
ADPN 71 20 51 100
SPIRA 145 50 95 96
PAPER 384 33 351 54

5.2. Benchmark methods

Two conventional FS methods and four recently proposed EC-based FS methods are used as the bench-

mark methods. The two conventional methods are SFS and SBS (Kohavi and John, 1997), which use greedy

search strategies to optimize the FS problem. The four EC-based methods are WOA-CM (Mafarja and

Mirjalili, 2018), NSGAII-IPM (Li et al., 2016), NSPSOFS (Xue et al., 2013) and CMDPSOFS (Xue et al.,345

2013). WOA-CM (Mafarja and Mirjalili, 2018) is a single objective WOA method proposed for FS. It em-

beds the genetic operations in the evolutionary process to improve the search performance. Moreover, it

adopts a fitness function combining the accuracy with the percentage of selected features. NSGAII-IPM

is a multiobjective FS method recently proposed for KQC identification. It adopts a modified NSGA-II

(MNSGAII) with a modified fast nondominated sorting approach to improve the search performance, and350

adopts a multiobjective decision method, i.e., IPM, to select the best solution from the set of nondominated

solutions found by MNSGAII. NSPSOFS and CMDPSOFS are two recently proposed MOPSO-based FS

methods (Xue et al., 2013). NSPSOFS introduces the nondominated sorting strategy to PSO and CMDP-

SOFS applies the strategies of crowding, mutation and dominance to PSO to address the multiobjective FS

problems. As NSPSOFS and CMDPSOFS do not use a multiobjective decision method to further reduce355

the number of solutions, IPM is adopted to further select the final solution from the set of returned non-

dominated solutions, similar to that in MNSWOA-IPM and NSGAII-IPM. The multiobjective FS problem

in NSGAII-IPM, NSPSOFS and CMDPSOFS is defined as maximizing the accuracy and minimizing the

feature subset size.

5.3. Parameter settings360

In proposed MNSWOA-IPM, we set the swarm size N = 100 and the maximum number of iterations

Tmax = 100. The user-defined parameter b in spiral position updating of MNSWOA-IPM is set as 1 as

suggested by Mirjalili and Lewis (2016). For a fair comparison, in the benchmark EC approaches (i.e.,

WOA-CM, NSGAII-IPM, NSPSOFS and CMDPSOFS), the settings of the swarm (or population) size N

and the maximum number of iterations Tmax are the same as MNSWOA-IPM, i.e., N = 100 and Tmax = 100.365

In WOA-CM, the crossover and mutation rates are set as 1 and 0.9 as suggested by Mafarja and Mirjalili

(2018). In NSGAII-IPM, the crossover and mutation rates are pc = 0.9 and pm = 1/D (D is the number of
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original features) as suggested by Li et al. (2016). For NSPSOFS and CMDPSOFS, the parameter settings

except for the swarm size are the same as that used by Xue et al. (2013). Specifically, in NSPSOFS, the

maximum velocity vmax = 0.6, the constants of acceleration c1 = c2 = 1.49618, and the inertia weight370

w = 0.7298. In CMDPSOFS, vmax = 0.6, c1 and c2 are random values between 1.5 and 2.0, w is a random

value between 0.1 and 0.5, and the mutation rate is 1/D.

5.4. Experimental configuration

To evaluate the performance of the FS methods for KQC identification, 10-fold CV is used to conduct

the experiments. In a 10-fold CV process, the original dataset is divided into 10 folds and 10 validation375

runs are conducted. For each run, one fold (10%) is used as the test set and the remaining 9 folds (90%)

are combined as the training set. The training set is used to build a learning model (i.e., classifier) with

the selected features of the FS method. The classification performance of the learnt model on the test set

is then used to evaluate the FS effectiveness. Moreover, for all the stochastic methods (the methods except

SFS and SBS), we repeat the 10-fold CV 3 times with different running seeds, which yields 3× 10 = 30 runs380

of experiments for each method on each dataset. The Wilcoxon signed-rank test (Wilcoxon, 1945) is used

to compare the results of the 30 experimental runs between proposed MNSWOA-IPM and the benchmark

methods. Note that, the training set is also used by the FS method to obtain the final feature subset.

It is mainly used by the FS method for evaluating the classification performance (goodness) of a solution

(feature subset) during the optimization process. Specifically, inner 5-fold CV is used based on the training385

set to estimate the classification performance (i.e., objective function f1 in the proposed method). In an

inner 5-fold CV process, the training set is divided into 5 folds to generate 5 pairs of the inner training and

test sets. For each pair, the inner training set is used to build an inner learning model and the model’s

classification performance on the inner test set is obtained. Finally, the average classification performance

over the 5 inner test sets is calculated to evaluate the goodness of a given feature subset. The aforementioned390

procedure to validate a FS method using 10-fold CV is shown in Figure 1, which also shows the relation

between the 10-fold CV and inner 5-fold CV. For a more detailed description of the inner 5-fold CV in a

wrapper-based FS method, please see Kohavi and John (1997).

All the experiments are run on a PC with 3.60GHz CPU and 16GB RAM. The naive Bayesian (NB)

classifier (John and Langley, 1995) is adopted as the learning algorithm, since it is a simple and high perfor-395

mance classifier. In the experiments, the NB classifier is directly invoked from the Waikato Environment for

Knowledge Analysis (WEKA) (Hall et al., 2009). The imbalance ratio (the ratio of majority class instances

to minority class instances) on the PAPER dataset is much higher than that on the other datasets, which

has a negative effect that the trained classifier is unreliable itself (Bhowan et al., 2013). To combat this

negative effect, we use the WEKA configuration that assigns a higher weight (equal to the imbalance ratio)400

to the training instances of the minority class when training the NB classifier. MNSWOA-IPM, WOA-CM,
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Figure 1: Procedure to validate a FS method using 10-fold CV.

NSGAII-IPM, NSPSOFS and CMDPSOFS are implemented in MATLAB 2016b, and SFS and SBS are

employed in WEKA with default settings.

5.5. Performance metrics

The performance metrics to evaluate the FS methods are “accuracy”, “TPR & TNR”, “AUC” (area405

under a receiver operating characteristic curve) (Fawcett, 2006) , “the number of selected features” and

“computational time”. Accuracy is the most commonly used performance metric for classification. In this

paper, TPR & TNR and AUC are used in addition to accuracy to comprehensively measure the classification

performance of the selected features of each method on the unbalanced production datasets. The number of

selected features can measure the dimensionality reduction effectiveness of the methods. The computational410

time measures the efficiency of each method.

Since binary classification problems are addressed in this paper, we let TP, TN, FP and FN be the

numbers of true positive, true negative, false positive and false negative instances, respectively. Then,
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accuracy is obtained as

Accuracy =
TP + TN

TP + TN + FP + FN
. (11)

In terms of TPR & TNR, TPR measures the percentage of correctly classified positive instances (the minority415

class), and TNR measures the percentage of correctly classified negative instances (the majority class). These

two metrics can well address the data imbalance problem, since the classification performance on both the

majority and minority classes are evaluated by TNR and TPR. The two metrics are defined as

TPR =
TP

TP + FN
, (12)

TNR =
TN

TN + FP
. (13)

A receiver operating characteristic (ROC) curve is a two dimensional graph plotting the TPR against420

the false positive rate (FPR) for different decision thresholds of a classifier (Fawcett, 2006). The higher the

curve is, the better the classification performance is. Since the ROC curve is not sensitive to the change

of class distribution, it is a good classification performance indicator for unbalanced data. AUC is a scalar

value that denotes the area under an ROC curve. It simplifies the comparison of ROC curves. The value of

AUC is in [0.5, 1], and a larger value denotes better classification performance. In this paper, the calculation425

method proposed by Fawcett (2006) is used to obtain the AUC value.

6. Results and discussion

Tables 3 to 6 show the FS (KQC identification) results on the accuracy, TPR & TNR, and AUC metrics,

which are the larger the better. Tables 7 and 8 show the results on the number of selected features and

computational time metrics, which are the smaller the better. In each of these tables, the mean and standard430

deviation of the performance metric values over the 30 runs are shown for each method. The Wilcoxon

signed-rank test is used to compare the proposed method with each benchmark method, where “↑↑” or “↓↓”

denotes the proposed MNSWOA-IPM obtains better or worse results at a significance level of α = 0.05 and

“↑” or “↓” denotes MNSWOA-IPM obtains better or worse results at a significance level of α = 0.1. The

average results on the performance metrics over the four datasets are listed on the “AVERAGE” row for435

each method.

6.1. Comparisons on obtained accuracy rates

According to Table 3, MNSWOA-IPM generally obtains similar or higher accuracy rates than the bench-

mark methods on the first three datasets, i.e., LATEX, ADPN and SPIRA. On LATEX, MNSWOA-IPM

obtains a significantly higher accuracy rate than SFS and SBS at the significance level of 0.05, and obtains a440

significantly higher accuracy rate than WOA-CM at the significance level of 0.1. On ADPN, MNSWOA-IPM
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obtains a significantly higher accuracy rate than SFS, SBS, WOA-CM and NSPSOFS at the significance

level of 0.05. On SPIRA, MNSWOA-IPM obtains a significantly higher accuracy rate than the benchmark

methods except SFS at the significance level of 0.05. On the last dataset PAPER, MNSWOA-IPM obtains

a slightly lower accuracy rate than other methods, and the statistical significance test results denote that445

MNSWOA-IPM obtains a significantly lower accuracy rate than two methods, i.e., SBS and WOA-CM. To

sum up, the proposed MNSWOA-IPM can obtain comparable or even better accuracy rates than benchmark

methods in most cases.

Table 3: The accuracy rates (%) obtained by each method.
Dataset MNSWOA-IPM SFS SBS WOA-CM NSGAII-IPM NSPSOFS CMDPSOFS
LATEX 81.14 ± 7.23 78.62 ± 6.72 ↑↑ 76.75 ± 8.72 ↑↑ 77.38 ± 8.83 ↑ 79.27 ± 7.26 78.91 ± 7.96 77.78 ± 7.72
ADPN 82.72 ± 7.90 77.32 ± 13.22 ↑↑ 75.71 ± 14.36 ↑↑ 77.80 ± 8.97 ↑↑ 78.65 ± 14.74 75.42 ± 12.62 ↑↑ 80.17 ± 14.65
SPIRA 81.22 ± 8.59 82.81 ± 5.38 73.38 ± 11.53 ↑↑ 72.86 ± 11.80 ↑↑ 74.93 ± 8.14 ↑↑ 74.73 ± 11.46 ↑↑ 77.49 ± 8.81 ↑↑
PAPER 87.94 ± 4.61 88.00 ± 4.13 90.07 ± 4.72 ↓ 89.73 ± 4.67 ↓ 88.76 ± 4.73 88.43 ± 4.69 88.59 ± 4.65
AVERAGE 83.25 81.69 78.98 79.44 80.40 79.37 81.01

6.2. Comparisons on obtained TPR and TNR values

According to Table 4, the proposed MNSWOA-IPM obtains significantly better TPR results in most450

cases. On LATEX and ADPN, MNSWOA-IPM obtains significantly higher TPR values than five bench-

mark methods at the significance level of 0.05 and obtains significantly higher TPR values than the other

one benchmark method at the significance level of 0.1. On SPIRA and PAPER, MNSWOA-IPM obtains

significantly higher TPR values than the five benchmark methods, i.e., SBS, WOA-CM, NSGAII-IPM, NSP-

SOFS and CMDPSOFS, at the significance level of 0.05. According to Table 5, MNSWOA-IPM obtains455

similar TNR results to the benchmark methods in most cases. In a few cases, MNSWOA-IPM obtains sig-

nificantly better or worse TNR results than the benchmark methods. Specifically, MNSWOA-IPM obtains

a significantly higher TNR value than SBS, WOA-CM and NSGAII-IPM on SPIRA, obtains a significantly

lower TNR value than SFS on LATEX, and obtains a significantly lower TNR value than benchmark meth-

ods except SFS on PAPER. Comprehensively analyzing the TPR and TNR results in Tables 4 and 5,460

MNSWOA-IPM substantially increases the TPR values with a slight decrease of TNR values compared with

the benchmark methods. Moreover, according to the average results over the datasets, MNSWOA-IPM

obtains a substantially higher average TPR value than the benchmark methods. In comparison, MNSWOA-

IPM obtains a slightly lower average TNR value (84.84%) than the highest TNR value (87.04%) obtained

by CMDPSOFS.465

6.3. Comparisons on obtained AUC values

According to Table 6, MNSWOA-IPM obtains the highest AUC value on LATEX (88.68%), ADPN

(87.50%) and SPIRA (84.71%), and obtains a similar AUC value (93.03%) to the highest one (93.21%)

obtained by SFS on PAPER. Moreover, MNSWOA-IPM obtains the highest average AUC value (88.48%)
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Table 4: The TPR values (%) obtained by each method.
Dataset MNSWOA-IPM SFS SBS WOA-CM NSGAII-IPM NSPSOFS CMDPSOFS
LATEX 74.05 ± 20.17 49.82 ± 17.79 ↑↑ 63.93 ± 15.23 ↑↑ 64.64 ± 18.52 ↑↑ 64.17 ± 22.11 ↑ 59.11 ± 20.17 ↑↑ 57.83 ± 22.80 ↑↑
ADPN 83.33 ± 23.57 75.00 ± 25.00 ↑ 65.00 ± 32.02 ↑↑ 68.33 ± 32.87 ↑↑ 69.36 ± 31.16 ↑↑ 55.83 ± 39.10 ↑↑ 64.03 ± 36.59 ↑↑
SPIRA 74.00 ± 13.81 74.00 ± 15.62 62.00 ± 24.41 ↑↑ 60.67 ± 21.59 ↑↑ 64.39 ± 19.20 ↑↑ 57.00 ± 25.19 ↑↑ 63.17 ± 18.73 ↑↑
PAPER 90.56 ± 15.02 88.33 ± 14.53 79.17 ± 23.35 ↑↑ 72.78 ± 23.27 ↑↑ 65.42 ± 25.85 ↑↑ 69.03 ± 24.48 ↑↑ 71.13 ± 23.89 ↑↑
AVERAGE 80.48 71.79 67.52 66.61 65.83 60.24 64.04

Table 5: The TNR values (%) obtained by each method.
Dataset MNSWOA-IPM SFS SBS WOA-CM NSGAII-IPM NSPSOFS CMDPSOFS
LATEX 84.16 ± 8.78 90.70 ± 5.63 ↓↓ 82.14 ± 9.36 82.68 ± 9.58 85.46 ± 8.38 87.16 ± 8.28 86.14 ± 7.42
ADPN 82.33 ± 13.03 78.00 ± 20.88 80.00 ± 12.65 81.33 ± 11.47 82.26 ± 15.60 83.00 ± 16.70 86.54 ± 15.42
SPIRA 85.11 ± 13.92 87.56 ± 8.90 79.22 ± 11.32 ↑↑ 79.19 ± 12.33 ↑↑ 80.45 ± 13.85 ↑ 84.11 ± 10.37 85.11 ± 12.12
PAPER 87.74 ± 5.07 88.04 ± 4.90 91.16 ± 5.64 ↓↓ 91.45 ± 5.38 ↓↓ 91.00 ± 4.47 ↓↓ 90.30 ± 5.24 ↓↓ 90.36 ± 5.28 ↓↓
AVERAGE 84.84 86.07 83.13 83.66 84.79 86.15 87.04

over the datasets, while the average AUC values obtained by other methods are all below 85%. According470

to the statistical significance test results, MNSWOA-IPM obtains significantly higher AUC values than

benchmark methods in 11/24 cases at the significance level of 0.05, and obtains significantly higher AUC

values than the benchmark methods in 5/24 cases at the significance level of 0.1. To sum up, the proposed

method obtains a high level of AUC results, which shows that it obtains good classification performance on

the unbalanced production datasets.475

Table 6: The AUC (%) values obtained by each method.
Dataset MNSWOA-IPM SFS SBS WOA-CM NSGAII-IPM NSPSOFS CMDPSOFS
LATEX 88.68 ± 5.24 82.58 ± 12.66 81.44 ± 5.94 ↑↑ 82.27 ± 6.64 ↑↑ 86.58 ± 6.24 81.89 ± 9.93 ↑↑ 84.08 ± 7.25 ↑↑
ADPN 87.50 ± 13.71 80.17 ± 16.51 ↑ 77.00 ± 23.22 ↑↑ 83.83 ± 15.21 82.64 ± 22.26 76.17 ± 21.84 ↑↑ 80.14 ± 25.89 ↑
SPIRA 84.71 ± 8.81 82.13 ± 11.34 ↑ 82.29 ± 14.08 80.84 ± 11.95 ↑ 78.77 ± 9.47 ↑↑ 80.89 ± 11.11 ↑ 82.12 ± 9.58 ↑↑
PAPER 93.03 ± 8.49 93.21 ± 5.32 91.81 ± 6.73 90.76 ± 8.57 87.07 ± 10.33 ↑↑ 90.46 ± 7.61 ↑↑ 89.68 ± 8.38 ↑↑
AVERAGE 88.48 84.52 83.14 84.43 83.77 82.35 84.01

6.4. Comparisons on the number of selected features

According to Table 7, MNSWOA-IPM selects the fewest features (i.e., KQCs) on all the datasets. On

LATEX, ADPN and PAPER, the statistical significance test results show that MNSWOA-IPM selects

significantly fewer features than all the benchmark methods at the significance level of 0.05. On SPIRA,

MNSWOA-IPM selects significantly fewer features than three benchmark methods (SBS, WOA-CM and480

NSPSOFS) at the significance level of 0.05, and selects significantly fewer features than NSGAII-IPM at the

significance level of 0.1. SFS, NSGAII-IPM, NSPSOFS and CMDPSOFS select slightly more features than

MNSWOA-IPM on the four datasets, and the results of “number of selected features” of these methods

are similar. SBS and WOA-CM obtain the worst “number of selected features” results since they select

many more features than other methods. The above results imply that the proposed MNSWOA-IPM is very485

effective in reducing the number of selected features.
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Table 7: The number of selected features obtained by each method.
Dataset MNSWOA-IPM SFS SBS WOA-CM NSGAII-IPM NSPSOFS CMDPSOFS
LATEX 3.80 ± 0.65 7.70 ± 2.90 ↑↑ 93.80 ± 15.85 ↑↑ 59.17 ± 9.83 ↑↑ 6.20 ± 2.26 ↑↑ 5.97 ± 3.48 ↑↑ 7.30 ± 4.20 ↑↑
ADPN 2.20 ± 0.40 5.30 ± 1.27 ↑↑ 25.80 ± 9.87 ↑↑ 39.17 ± 7.63 ↑↑ 3.10 ± 0.75 ↑↑ 5.67 ± 3.40 ↑↑ 5.03 ± 2.81 ↑↑
SPIRA 3.40 ± 0.71 3.50 ± 1.02 51.70 ± 16.51 ↑↑ 42.40 ± 5.25 ↑↑ 3.97 ± 1.14 ↑ 4.80 ± 1.68 ↑↑ 4.30 ± 2.62
PAPER 3.13 ± 0.67 4.40 ± 2.15 ↑↑ 38.90 ± 8.79 ↑↑ 26.63 ± 3.96 ↑↑ 4.93 ± 0.77 ↑↑ 7.87 ± 3.11 ↑↑ 5.30 ± 1.37 ↑↑
AVERAGE 3.13 5.22 52.55 41.84 4.55 6.08 5.48

6.5. Computational time

According to Table 8, MNSWOA-IPM takes less computational time than SBS and takes more compu-

tational time than SFS on the four datasets. SFS is time efficient due to its greedy search strategy needs

only a small number of function evaluations. Additionally, the objective function evaluation process in SFS490

is time efficient, since SFS searches for the best solution from an empty feature subset, which makes the

sizes of feature subsets to be evaluated in SFS are generally small. Compared with the EC-based benchmark

methods (WOA-CM, NSGAII-IPM, NSPSOFS and CMDPSOFS), MNSWOA-IPM takes significantly less

computational time on all the datasets. This denotes that the caching strategy used in MNSWOA-IPM is

effective.495

Table 8: Computational time (CPU time in minutes) taken by each method.
Dataset MNSWOA-IPM SFS SBS WOA-CM NSGAII-IPM NSPSOFS CMDPSOFS
LATEX 6.93 ± 0.84 1.47 ± 0.75 ↓↓ 40.01 ± 18.02 ↑↑ 25.64 ± 3.68 ↑↑ 10.26 ± 0.60 ↑↑ 10.08 ± 1.90 ↑↑ 10.00 ± 1.74 ↑↑
ADPN 1.14 ± 0.13 0.21 ± 0.05 ↓↓ 7.47 ± 0.94 ↑↑ 2.97 ± 0.35 ↑↑ 1.61 ± 0.06 ↑↑ 1.70 ± 0.20 ↑↑ 1.57 ± 0.19 ↑↑
SPIRA 2.85 ± 0.40 0.23 ± 0.07 ↓↓ 17.07 ± 2.40 ↑↑ 9.21 ± 0.77 ↑↑ 4.10 ± 0.19 ↑↑ 3.84 ± 0.59 ↑↑ 3.67 ± 0.63 ↑↑
PAPER 4.99 ± 0.81 0.26 ± 0.16 ↓↓ 6.17 ± 2.31 ↑↑ 15.95 ± 1.57 ↑↑ 7.27 ± 0.28 ↑↑ 8.91 ± 1.25 ↑↑ 8.29 ± 0.72 ↑↑
AVERAGE 3.98 0.54 17.68 13.44 5.81 6.13 5.88

6.6. Discussion

Comprehensively analyzing the results in Tables 3 to 8, we can reach the following conclusions:

First, the proposed MNSWOA-IPM performs more effectively than benchmark methods in selecting

KQCs on the unbalanced production data. Specifically, MNSWOA-IPM generally obtains high values of

accuracy and AUC, while obtaining substantially higher TPR values with similar or slightly lower TNR values500

than benchmark methods. This denotes that MNSWOA-IPM can obtain good classification performance on

both the majority and minority classes. The reason that leads to the results is that the GM measure used

in MNSWOA-IPM can measure the classification ability of feature subsets more precisely than the accuracy

measure used in benchmark methods on the unbalanced production data.

Second, the multiobjective EC approaches have a better feature reduction capability than the single505

objective EC approach, i.e., WOA-CM. The multiobjective approaches, including NSGAII-IPM, NSPSOFS

and CMDPSOFS, adopt the same optimization objectives (maximizing the accuracy and minimizing the

feature subset size) as that of WOA-CM. Compared with WOA-CM, these multiobjective approaches select

much fewer features while obtaining similar classification performance. This is due to the fact that the
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multiobjective approaches independently treat “the feature subset size” as an optimization objective in510

addition to the classification performance measure, which promotes the algorithm to select only a few

features. In comparison, “the percentage of selected features” in WOA-CM gains a much lower weight than

“the classification accuracy” to form the integrated objective function, which limits its ability to reduce

irrelevant or redundant features. Moreover, from the perspective of optimization, the swarm (or population)

diversity in the multiobjective approaches can be well maintained. This is because that the swarm of515

these multiobjective approaches during the evolutionary process (even in the late evolutionary phases) is

composed of solutions with different feature subset sizes as the feature subset size is defined as one separate

optimization objective. This is a clear advantage compared with single objective approaches for FS.

Third, the multiobjective EC approaches are much more time efficient than the single objective EC

approach, i.e., WOA-CM. As stated above, the multiobjective approaches have a better feature reduction520

capability than WOA-CM. This implies that the average feature subset size of the multiobjective approaches

for objective function evaluation during the whole evolutionary process is smaller than that of WOA-CM.

Since the size of a feature subset (solution) indicates the dimensionality of the data used to build the

evaluator (the classifier) in the wrapper framework, it is obvious that the multiobjective approaches with a

better feature reduction capability take less time in evaluating the objective functions than WOA-CM.525

Finally, it should be noted that the multiobjective approaches actually adopt a two-phase FS scheme

to obtain the final feature subset (KQC set). In the first phase, a multiobjective optimization method

is used to find a set of solutions on the nondominated front by simultaneously optimizing the two FS

objectives, the classification performance and the feature subset size. In the second phase, the multiobjective

decision method (IPM) is used to selected the most desirable feature subset from the found solutions in the530

first phase. It is worth noting that, it is flexible to perform the second phase FS task. The decision

maker may use other multiobjective decision methods such as TOPSIS instead of IPM to select a desirable

final feature subset. Moreover, the decision maker’s preference can be considered while selecting the final

feature subset. The tradeoffs between the two FS objectives can be considered by the decision maker based

on the domain knowledge for selecting the final feature subset. Comparing the performance of different535

multiobjective decision methods and examining the FS performance considering different types of decision

makers’ preferences are worth studying in the future.

6.7. Comparisons on the identified KQCs

The above experimental results based on 10-fold CV have shown that the proposed MNSWOA-IPM

method is an effective and efficient FS method for KQC identification. From a practical point of view,540

the practitioners are concerned about which QCs (feature) are identified as the KQCs. In this regard, we

further compare the identified KQCs of the FS methods on the four datasets. To obtain the KQCs, the

four original datasets (LATEX, ADPN, SPIRA and PAPER) are input to the 7 FS methods (including
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MNSWOA-IPM and the benchmark methods). The identified KQCs of each FS method are shown in Table

9, where each identified KQC is denoted by its index in the full QC set. According to the table, MNSWOA-545

IPM generally selects a few KQCs on the four datasets; SFS, NSGAII-IPM, NSPSOFS, and CMDPSOFS

generally select similar or slightly more KQCs than MNSWOA-IPM on the four datasets; SBS and WOA-

CM select substantially more KQCs than other methods. These results are consistent with the experimental

results in Section 6.4, and show that MNSWOA-IPM is effective in reducing the number of selected features

(QCs). Specifically, on LATEX, MNSWOA-IPM identifies QCs 27, 53, 57, 96 and 97 as the KQCs. These550

QCs are also identified by SBS and WOA-CM. However, SBS and WOA-CM also select a large number of

other QCs. SFS and NSGAII-IPM also identify QCs 53, 96 and 97 as the KQCs, while they do not identify

QC 27 as the KQC. On ADPN, MNSWOA-IPM identifies QCs 8, 24 and 68 as the KQCs. WOA-CM

identifies the three QCs as well, while it identifies many more QCs as KQCs than MNSWOA-IPM. Except

for MNSWOA-IPM and WOA-CM, QCs 24 and 68 are also identified by SFS and NSPSOFS, and QC 8 is555

only identified by SBS. On SPIRA, MNSWOA-IPM identifies QCs 71, 77 and 78 as the KQCs. Except for

MNSWOA-IPM, QC 71 is also identified all the other methods, QC 77 is also identified by SBS, WOA-CM

and NSGAII-IPM, and QC 78 is also identified by SFS, SBS and CMDPSOFS. On PAPER, MNSWOA-IPM

identifies QCs 25, 33 and 45 as the KQCs. Except for MNSWOA-IPM, QC 33 is also identified by SBS,

WOA-CM and CMDPSOFS, and QC 45 is also identified by the benchmark methods except SFS. However,560

no methods except MNSWOA-IPM can identify QC 25 as the KQC. A possible reason is that the highly

unbalanced PAPER dataset strongly affects the KQC identification performance of the benchmark methods.

In these methods, some informative features (QCs) are not able to be identified because the data imbalance

problem is not considered during the FS process.

7. Further analysis565

The results in Section 6 have shown that the proposed MNSWOA-IPM is effective for FS (KQC identifi-

cation) on unbalanced production data. One main reason why MNSWOA-IPM obtains better performance

than benchmark methods is that it considers the imbalance problem of production data while constructing

the FS problem. Except for the established FS problem, the optimization method plays an important role

in FS as well. Specifically, the performance of MNSWOA in the first phase of MNSWOA-IPM determines570

whether high quality candidate solutions can be found for further selection by IPM. In this section, we

further compare MNSWOA with several existing multiobjective optimization methods, by applying these

methods to the same FS problem (defined in Eq. (9)) as optimized by MNSWOA. The fitness values (i.e.,

objective functions f1 and f2) are used to compare the search performance of these methods.
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Table 9: The KQCs identified by each method.
Method LATEX ADPN SPIRA PAPER
MNSWOA-IPM 27, 53, 57, 96, 97 8, 24, 68 71, 77, 78 25, 33, 45
SFS 37, 47, 53, 55, 96, 97,

115
24, 25, 45, 68, 94, 96 23, 71, 78 34, 47

SBS 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15,
16, 18, 20, 21, 22, 23,
24, 26, 27, 29, 30, 31,
32, 33, 34, 39, 40, 42,
43, 44, 45, 46, 47, 51,
52, 53, 54, 56, 57, 58,
60, 61, 62, 64, 65, 66,
68, 69, 70, 72, 73, 74,
76, 77, 78, 79, 80, 83,
84, 85, 86, 87, 95, 96,
97, 98, 103, 109, 117

1, 2, 7, 8, 13, 14, 15,
18, 21, 23, 24, 29, 33,
35, 36, 43, 45, 46

1, 4, 5, 6, 8, 9, 10, 11,
13, 14, 15, 16, 22, 25,
26, 27, 28, 32, 35, 36,
39, 40, 41, 42, 43, 48,
49, 50, 51, 56, 58, 60,
61, 63, 67, 70, 71, 75,
77, 78, 80, 83, 84, 86,
89, 90, 92, 93, 96

2, 3, 5, 6, 7, 9, 10, 13,
20, 21, 22, 23, 24, 27,
29, 30, 31, 33, 34, 35,
36, 37, 38, 39, 40, 41,
43, 45, 46, 48, 49, 50,
51, 52, 53

WOA-CM 2, 3, 7, 10, 13, 15, 23,
24, 25, 26, 27, 38, 40,
45, 46, 51, 53, 55, 57,
59, 62, 63, 64, 66, 69,
71, 72, 73, 75, 76, 77,
80, 81, 83, 84, 85, 87,
91, 92, 93, 94, 95, 96,
97, 98, 100, 102, 104,
114

1, 2, 3, 5, 6, 7, 8, 10,
11, 12, 14, 15, 19, 24,
25, 28, 29, 30, 32, 35,
36, 38, 39, 40, 43, 46,
48, 51, 55, 58, 60, 62,
64, 68, 69, 71, 72, 74,
76, 78, 82, 86, 87, 88,
89, 90, 93, 95, 96, 97,
98, 99, 100

1, 6, 14, 27, 28, 30, 31,
32, 35, 37, 40, 42, 46,
55, 56, 59, 61, 67, 69,
71, 77, 79, 81, 83, 84,
86, 90, 96

4, 5, 6, 7, 11, 13, 15,
18, 20, 23, 24, 26, 28,
29, 30, 32, 33, 34, 36,
37, 38, 40, 41, 44, 45,
46, 48, 53

NSGAII-IPM 23, 51, 53, 69, 78, 84,
96, 97

36, 71 26, 32, 71, 77, 96 5, 7, 23, 37, 45, 47, 53

NSPSOFS 23, 27, 50, 51, 116 24, 68, 71, 79, 80, 92,
96

32, 52, 71 4, 7, 23, 28, 29, 32, 37,
40, 41, 45, 53

CMDPSOFS 23, 27, 51, 74, 81, 96,
102

25, 68 63, 71, 78, 95 7, 18, 33, 34, 37, 42, 45

7.1. Experimental design575

Several benchmark multiobjective optimization methods are used to evaluate the search performance

of MNSWOA. First, the three multiobjective optimization methods, MNSGAII (Li et al., 2016), NSPSO

(Xue et al., 2013) and CMDPSO (Xue et al., 2013), for establishing the benchmark FS methods in Section

5 are used. Second, two widely used MOEAs, i.e., SPEA2 (Zitzler et al., 2001) and MOEA/D (Zhang

and Li, 2007) with the Tchebycheff approach, are adopted as the benchmark methods as well. Finally,580

to test whether the unique components in MNSWOA are effective, we design three MNSWOA variants

named MNSWOA-NS, MNSWOA-UNI and MNSWOA-MU as the benchmark methods. Compared with

MNSWOA, the differences in the three variants are: MNSWOA-NS adopts the standard fast nondominated

sorting approach and the crowding distance calculation method proposed by Deb et al. (2002) to sort

solutions; MNSWOA-UNI randomly selects the reference solution instead of the uniform selection strategy;585

MNSWOA-MU does not conduct the mutation operations. All the multiobjective optimization methods are

used on the same FS problem in Eq. (9), and the experimental configurations are the same as those in Section

5.4, i.e., 3 repetitions of 10-fold CV (30 experimental runs in total) are conducted. The parameter settings
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for MNSGAII, NSPSOFS and CMDPSOFS are the same as those in Section 5.3. The three MNSWOA

variants adopt the same parameters as those used in MNSWOA. In SPEA2 and MOEA/D, the size of590

population, the maximum number of iterations, the crossover rate and the mutation rate are 100, 100, 0.9

and 1/D (D is the number of original features), which are the same as those used in MNSGAII. The number

of neighbors in MOEA/D is set as 10 as suggested by Zhang and Li (2007). Similar to the comparisons in

Section 6, “↑↑” or “↑” (“↓↓” or “↓”) denotes MNSWOA obtains significantly better (worse) results than the

compared method at a significance level of 0.05 or 0.1 using the Wilcoxon signed-rank test.595

7.2. Quality indicators

We conduct two sets of comparisons to validate the MNSWOA method. First, three widely used quality

indicators are adopted to compare the final search results of the multiobjective optimization methods. They

are the inverted generational distance (IGD) (Deb and Jain, 2014; Yuan et al., 2016), the hypervolume (HV)

measure (Yuan et al., 2016; Zitzler and Thiele, 1999) and the set coverage (SC) measure (Zhang and Li, 2007;600

Zitzler and Thiele, 1999). Second, the convergence distance (CD) indicator (Li et al., 2019) that measures

the quality of solutions at each iteration is adopted to draw the convergence curves of the multiobjective

optimization methods. A brief introduction of these indicators is presented as follows.

The IGD indicator is defined as follows. For a set P of solutions, its IGD value IGD(P) is the average of

distances between Pareto optimal solutions and their nearest solution in P. Let P∗ be the Pareto set. Then,605

IGD(P) is obtained as

IGD(P) =
1

|P∗|
∑

p∗∈P∗

min
p∈P

D(p, p∗), (14)

where | | denotes the set size and D(p, p∗) denotes the Euclidean distance between the two solutions p and

p∗ in the objective space. The smaller the IGD(P) is, the higher the quality of P is.

The HV indicator is defined as follows. For a set P of solutions, HV (P) denotes the hypervolume

dominated by P. Let r = (r1, ..., rM ) be the reference point in the objective space. Then, HV (P) is obtained610

as

HV (P) = volume

⋃
p∈P

M∏
m=1

|rm − fp,m|

 , (15)

where M denotes the number of objectives, fp,m denotes the mth objective function value of solution p.

The larger the HV (P) is, the better the P is.

The SC indicator is defined as follows. Let P and Q be two sets of solutions. SC(P,Q) indicates the

percentage of solutions in Q that are covered by (dominated by or equal to) solutions in P. It is obtained as615

SC(P,Q) =
|{q ∈ Q|∃p ∈ P : p � q}|

|Q|
, (16)
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where p � q denotes p dominates or equals q in the objective space. A larger SC(P,Q) denotes a higher

quality of P.

Since the ranges of different objective functions can be very different, it is required to solve the incom-

mensurability problem. In this paper, the objective functions f1 and f2 are normalized to fN1 and fN2 with

the min-max normalization method, where the maximum or minimum function value is obtained from the620

union of returned solutions by all the compared methods. The normalized function values fN1 and fN2 are

adopted instead of f1 and f2 when calculating the IGD, HV and SC values for each method. The IGD

indicator requires a known true Pareto set, which is unknown for most real world FS problems, including

the KQC identification problem addressed in this paper. Therefore, the best solutions of the 30 experimental

runs obtained by all the multiobjective optimization methods are combined to form the Pareto set. For the625

HV indicator, the reference point is defined as r = (1.1, 1.1) as suggested by Yuan et al. (2016). For the

SC indicator, we let Q be the Pareto set. Thus, the SC value indicates the percentage of Pareto solutions

covered by P.

The CD indicator (Li et al., 2019) measures the “distance” between the Pareto solutions and the solutions

found by an optimization method at each iteration. Let P∗ be the Pareto set and Pt be the set of found630

solutions at the tth iteration. Then, the CD value for Pt is obtained by

CD(Pt) = 0.5 ∗

 1

|P∗|
∑

p∗∈P∗

min
p∈Pt

D(p, p∗) +
1

|Pt|
∑
p∈Pt

min
p∗∈P∗

D(p∗, p)

 , (17)

where D(p, p∗) denotes the Euclidean distance between the two solutions p and p∗. According to Eq. (17),

the first part inside the big parentheses is actually the definition of IGD. The second part is the average of

distances between solutions in Pt and the nearest Pareto solution, which is the definition of the generational

distance (GD) indicator. Therefore, the CD indicator can been as an integration of IGD and GD. To635

solve the incommensurability problem when calculating the CD indicator, the two objective functions are

normalized with the min-max normalization method as well. Since the CD value of the found solutions at

each iteration can be calculated by Eq. (17), the convergence curve can be drawn for each method on each

dataset.

7.3. Comparisons of search results of the multiobjective optimization methods640

Table 10 shows the results on the quality indicators obtained by MNSWOA and the benchmark methods

(except for the MNSWOA variants). In the table, the means and standard deviations of the IGD, HV and SC

values over the 30 runs are shown for each method and the “AVERAGE” row shows the average results over

the four datasets. According to the IGD results, MNSWOA obtains lower IGD values than the benchmark

methods. The statistical significance test results show that MNSWOA can obtain significantly better IGD645

results in most cases. Specifically, at the significance level of 0.05, MNSWOA performs significantly better
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Table 10: Comparisons of search results between MNSWOA and benchmark methods.
Indicator Dataset MNSWOA MNSGAII SPEA2 MOEA/D NSPSO CMDPSO

IGD

LATEX 0.019 ± 0.018 0.046 ± 0.018 ↑↑ 0.042 ± 0.018 ↑↑ 0.076 ± 0.048 ↑↑ 0.081 ± 0.037 ↑↑ 0.086 ± 0.056 ↑↑
ADPN 0.025 ± 0.029 0.049 ± 0.034 ↑↑ 0.036 ± 0.024 ↑↑ 0.051 ± 0.031 ↑↑ 0.062 ± 0.018 ↑↑ 0.082 ± 0.050 ↑↑
SPIRA 0.032 ± 0.023 0.037 ± 0.014 0.040 ± 0.018 ↑↑ 0.090 ± 0.035 ↑↑ 0.080 ± 0.049 ↑↑ 0.084 ± 0.046 ↑↑
PAPER 0.024 ± 0.027 0.018 ± 0.015 0.026 ± 0.017 0.080 ± 0.048 ↑↑ 0.042 ± 0.017 ↑↑ 0.033 ± 0.018 ↑↑
AVERAGE 0.025 0.038 0.036 0.074 0.066 0.071

HV

LATEX 1.168 ± 0.018 1.083 ± 0.062 ↑↑ 1.086 ± 0.063 ↑↑ 1.112 ± 0.032 ↑↑ 1.059 ± 0.070 ↑↑ 1.010 ± 0.120 ↑↑
ADPN 1.172 ± 0.032 1.130 ± 0.051 ↑↑ 1.163 ± 0.034 ↑↑ 1.136 ± 0.040 ↑↑ 1.105 ± 0.069 ↑↑ 1.062 ± 0.106 ↑↑
SPIRA 1.120 ± 0.042 1.089 ± 0.042 ↑↑ 1.100 ± 0.038 ↑↑ 1.050 ± 0.059 ↑↑ 1.002 ± 0.113 ↑↑ 0.989 ± 0.110 ↑↑
PAPER 1.119 ± 0.039 1.119 ± 0.038 1.112 ± 0.044 ↑↑ 1.018 ± 0.073 ↑↑ 1.017 ± 0.081 ↑↑ 1.070 ± 0.060 ↑↑
AVERAGE 1.145 1.106 1.115 1.079 1.046 1.033

SC

LATEX 0.406 ± 0.179 0.057 ± 0.132 ↑↑ 0.049 ± 0.114 ↑↑ 0.145 ± 0.106 ↑↑ 0.030 ± 0.063 ↑↑ 0.025 ± 0.060 ↑↑
ADPN 0.450 ± 0.166 0.126 ± 0.132 ↑↑ 0.183 ± 0.193 ↑↑ 0.156 ± 0.112 ↑↑ 0.039 ± 0.070 ↑↑ 0.038 ± 0.088 ↑↑
SPIRA 0.404 ± 0.147 0.096 ± 0.138 ↑↑ 0.131 ± 0.138 ↑↑ 0.135 ± 0.124 ↑↑ 0.035 ± 0.069 ↑↑ 0.029 ± 0.080 ↑↑
PAPER 0.415 ± 0.158 0.351 ± 0.178 ↑ 0.317 ± 0.166 ↑ 0.187 ± 0.104 ↑↑ 0.051 ± 0.073 ↑↑ 0.117 ± 0.113 ↑↑
AVERAGE 0.419 0.157 0.170 0.156 0.039 0.052

than all the benchmark methods on LATEX and ADPN, performs significantly better than 4 of the 5

benchmark methods on SPIRA, and performs significantly better than 3 of the 5 benchmark methods on

PAPER. According to HV results, MNSWOA performs significantly better than the benchmark methods in

almost all cases. The statistical significance test results show that MNSWOA obtains significantly better650

(higher) HV results in 19 of the 20 cases compared with the benchmark methods and only obtains a similar

HV value to that of MNSGAII on PAPER. According to SC results, MNSWOA performs significantly better

than the benchmark methods at the significance level of 0.05 in almost all cases. The only exception is that

MNSWOA obtains a significantly better SC value than MNSGAII and SPEA2 at the significance level of

0.1 on PAPER. To sum up, the results on the IGD, HV, and SC indicators show a better search ability of655

MNSWOA than the benchmark multiobjective optimization methods.

Table 11 shows the results on the quality indicators of MNSWOA and its variants (i.e., MNSWOA-NS,

MNSWOA-UNI and MNSWOA-MU). MNSWOA obtains significantly better IGD, HV and SC results than

MNSWOA-NS and MNSWOA-MU at the significance level of 0.05 in almost all cases. The only exception is

that MNSWOA obtains a significantly better IGD value than MNSWOA-MU at the significance level of 0.1660

on PAPER. This implies that the modified nondominated sorting approach and the mutation operations are

effective for improving the search performance of MNSWOA. Comparing MNSWOA with MNSWOA-UNI,

MNSWOA obtains significantly better IGD and HV results on LATEX and SPIRA, and obtains significantly

better SC results on SPIRA and PAPER. This finding shows that at least one quality indicator indicates that

MNSWOA obtains significantly better search performance than MNSWWOA-UNI on the datasets except665

ADPN. According to above results, we can conclude that MNSWOA obtains better search performance than

its variants. Moreover, the modified nondominated sorting approach, the uniform selection strategy and the

mutation operations proposed for MNSWOA are all effective for improving its search performance.
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Table 11: Comparisons of search results between MNSWOA and its variants.
Indicator Dataset MNSWOA MNSWOA-NS MNSWOA-UNI MNSWOA-MU

IGD

LATEX 0.019 ± 0.018 0.082 ± 0.039 ↑↑ 0.031 ± 0.027 ↑↑ 0.059 ± 0.042 ↑↑
ADPN 0.025 ± 0.029 0.050 ± 0.040 ↑↑ 0.029 ± 0.032 0.035 ± 0.022 ↑↑
SPIRA 0.032 ± 0.023 0.101 ± 0.043 ↑↑ 0.045 ± 0.033 ↑ 0.068 ± 0.046 ↑↑
PAPER 0.024 ± 0.027 0.068 ± 0.046 ↑↑ 0.026 ± 0.025 0.033 ± 0.023 ↑
AVERAGE 0.025 0.076 0.032 0.049

HV

LATEX 1.168 ± 0.018 1.105 ± 0.037 ↑↑ 1.162 ± 0.023 ↑ 1.117 ± 0.035 ↑↑
ADPN 1.172 ± 0.032 1.144 ± 0.041 ↑↑ 1.171 ± 0.034 1.154 ± 0.041 ↑↑
SPIRA 1.120 ± 0.042 1.042 ± 0.069 ↑↑ 1.108 ± 0.039 ↑↑ 1.071 ± 0.053 ↑↑
PAPER 1.119 ± 0.039 1.017 ± 0.082 ↑↑ 1.115 ± 0.035 1.062 ± 0.070 ↑↑
AVERAGE 1.145 1.077 1.139 1.101

SC

LATEX 0.406 ± 0.179 0.257 ± 0.065 ↑↑ 0.369 ± 0.162 0.172 ± 0.071 ↑↑
ADPN 0.450 ± 0.166 0.283 ± 0.128 ↑↑ 0.392 ± 0.188 0.184 ± 0.131 ↑↑
SPIRA 0.404 ± 0.147 0.264 ± 0.099 ↑↑ 0.349 ± 0.111 ↑ 0.132 ± 0.095 ↑↑
PAPER 0.415 ± 0.158 0.170 ± 0.090 ↑↑ 0.344 ± 0.145 ↑↑ 0.139 ± 0.077 ↑↑
AVERAGE 0.419 0.243 0.363 0.157

7.4. Convergence property analysis

The above results illustrate that the proposed MNSWOA method shows a good search ability in solving670

the FS problem addressed in this paper. In this section, we further analyze the convergence property

of MNSWOA. The analysis is composed of two parts. First, the convergence curves of MNSWOA are

compared with those of the benchmark optimization methods, i.e., MNSGAII, SPEA2, MOEA/D, NSPSO

and CMDPSO. Second, the convergence curves of MNSWOA are compared with those of the MNSWOA

variants, i.e., MNSWOA-NS, MNSWOA-UNI and MNSWOA-MU.675

Comparisons of convergence curves obtained by MNSWOA and the benchmark methods are shown in

Figure 2, where x-axis is the number of iterations and y-axis is the distance between the Pareto solutions

and the solutions obtained at each iteration measured by the CD indicator in Eq. (17). Several results

can be found in Figure 2. First, MNSWOA shows a better convergence property than other methods. On

each dataset, the convergence curve of MNSWOA is much lower than those of other methods, showing680

that MNSWOA can converge fast and obtain better final convergence results. Second, the PSO-based

multiobjective approaches, i.e., NSPSO and CMDPSO, converge faster than the two multiobjective GAs,

MNSGAII and SPEA2. Meanwhile, the two PSO methods also suffer the premature convergence problem,

since in the late phase of the evolutionary process their convergence curves become higher than MNSGAII

and SPEA2. This shows that the two PSO methods can converge faster but have worse global search685

performance than the two GAs. Third, the convergence performance of MOEA/D is between the two PSO

methods (NSPSO and CMDPSO) and the two GAs (MNSGAII and SPEA2). In the early phase of the

evolutionary process, MOEA/D has a slightly lower convergence speed than NSPSO and CMDPSO. In

the late phase of the evolutionary process, MOEA/D can obtain similar convergence curves to those of

MNSGAII and SPEA2. To sum up, the proposed MNSWOA obtains both a fast convergence speed and a690

good final convergence result, showing that it is a very desirable multiobjective optimization method for the
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Figure 2: Convergence curves obtained by MNSWOA and benchmark multiobjective optimization methods.

FS problem addressed in this paper.

Comparisons of the convergence curves obtained by MNSWOA and its variants are shown in Figure

3, where the convergence curves at iterations 20 to 100 are magnified to facilitate the comparison. First,

it is found that MNSWOA and all the variants can quickly reduce the distance values measured by the695

CD indicator on each dataset, which means that all these methods can quickly converge. Second, accord-

ing to the enlarged parts of the convergence curves, MNSWOA obtains lower curves than the variants.

This denotes that all the new components used in MNSWOA are effective to improve the convergence

performance. Finally, the convergence curves of MNSWOA-NS and MNSWOA-MU are much higher than

those of MNSWOA. Meanwhile, the convergence curves of MNSWOA-UNI are slightly higher than those of700

MNSWOA. This means that the modified fast nondominated sorting approach and the mutation operations

are more effective than the uniform selection strategy in improving the search performance. To sum up, the

comparison results in Figure 3 denote that the modified fast nondominated sorting approach, the uniform
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Figure 3: Convergence curves obtained by MNSWOA and its variants.

selection strategy and mutation operations adopted by MNSWOA are all effective for improving the search

performance.705

The above comparisons have shown that MNSWOA obtains a better convergence property than the

benchmark methods based on GA and PSO strategies and the new components used in MNSWOA are

effective for improving its search performance. Several reasons can explain the effectiveness of MNSWOA:

• MNSWOA comprehensively combines the three types of “whale optimization algorithm” search strate-

gies during the evolutionary process. These strategies include both the direct learning (encircling prey710

and search for prey) and spiral learning (spiral position updating) mechanisms as well as both the local

search (encircling prey and spiral position updating) and global search (search for prey) mechanisms,

which produce good convergence performance of MNSWOA.

• Compared with the traditional fast nondominated sorting approach, the modified sorting approach

used in MNSWOA can effectively reduce the probability of duplicate solutions to be added to the715

30



next iteration, which substantially improves the swarm diversity and results in better convergence

performance.

• The uniform selection strategy ensures similar chances for the candidate solutions to be selected as the

reference solution. In comparison, the random reference selection strategy may select some candidates

many more times than others. This means that the limited computational resources are allocated too720

many on some candidate solutions that have already been sufficiently searched around, which has a

negative effect on the overall search performance of the MNSWOA variant with the random reference

selection strategy.

• The mutation operations enrich the solution updating strategies in MNSWOA and are helpful to

make MNSWOA escape from the local optima during the evolutionary process. This can substantially725

improve the global search ability of MNSWOA, especially for FS problems that have a very large

search space.

8. Conclusions

In modern production processes, identifying KQCs that strongly affect the product quality is essential

for quality control and improvement. This paper proposes a multiobjective wrapper-based FS method730

(MNSWOA-IPM) for KQC identification based on the unbalanced production data. The FS problem is

defined as maximizing the GM measure and minimizing the feature subset size. The GM measure is used

instead of the commonly used accuracy as the feature (QC) importance measure to address the imbalance

problem of production data. Then, a two-phase optimization method named MNSWOA-IPM is proposed to

solve the defined FS problem. In MNSWOA-IPM, MNSWOA is used to find a set of nondominated solutions,735

from which IPM is used to select the final solution. MNSWOA inherits the solution updating strategies

of WOA to evolve new solutions during the evolutionary process and adopts a modified fast nondominated

sorting approach to sort solutions in the multiobjective scenario. Moreover, the uniform selection strategy

and mutation operations are adopted in MNSWOA to enhance its search performance.

We conduct two sets of experiments to validate the proposed FS (i.e., KQC identification) method.740

According to the first set of experiments, MNSWOA-IPM obtains substantially better FS results than the

benchmark methods, including two conventional FS methods (SFS and SBS), the single objective WOA

based FS method (WOA-CM) and three recently proposed multiobjective FS methods (NSGAII-IPM, NSP-

SOFS and CMDPSOFS). The proposed MNSWOA-IPM generally obtains better classification performance

with fewer features (KQCs) than the benchmark methods. Moreover, MNSWOA-IPM takes less compu-745

tational time than the benchmark methods except for SFS. According to the second set of experiments,

MNSWOA obtains substantially better search performance than the benchmark multiobjective optimiza-

tion methods, including MNSGAII, SPEA2, MOEA/D, NSPSO and CMDPSO. Meanwhile, the the modified
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sorting approach, the uniform selection strategy and the mutation operations adopted in MNSWOA are all

effective for improving its search performance.750

The output variable of production data may be a continuous variable that reflects the product quality

instead of the discrete class label addressed in this paper. This requires a FS method for the regression model

to perform KQC identification. In the future, we will focus on building a FS method based on MNSWOA

for regression models. Moreover, proposing a filter-based feature subset importance measure to build a more

time efficient multiobjective FS method is also worth studying.755
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Appendix A. Time complexity of the modified nondominated sorting approach

The modified sorting approach in Algorithm 2 contains three time consuming parts, i.e., the traditional

fast nondominated sorting process (line 2), the nondomination rank increasing process (lines 4 to 11) and

the resorting process (line 14). The time complexity of the traditional fast nondominated sorting process is

O(Mo(N c)2) (Deb et al., 2002), where Mo denotes the number of objectives and N c denotes the number of765

solutions to be sorted. The time complexity of the resorting sorting process is O((N c) log(N c)).

To obtain the time complexity of the nondomination rank increasing process, we need to first analyze

the duplicate solution detection process (lines 5 to 10) inside the “for” loop. To decide whether Decode(Xi)

is the same as any solution in Decode(Ssorted), it is required to compare Decode(Xi) with every solu-

tion in Decode(Ssorted). Thus, the time complexity is O(N cD) since the maximum number of features in770

Decode(Ssorted) is D and the maximum number of solutions in Decode(Ssorted) is N c. However, we can use

the information of objective functions to reduce the time complexity of this part. A Decode(Xi) can be the

same as another solution in Decode(Ssorted) only if these two solutions have the same objective function

values. Therefore, Decode(Xi) only needs to be compared to solutions in Decode(Ssorted) with the same

objective function values. Decode(Ssorted) is a set without any duplicate solutions. Thus, the number of775

solutions in Decode(Ssorted) that have the same objective function values as Decode(Xi) is generally a very

small number R << D (or N c). Hence, in common cases, the time complexity of the duplicate solution

detection process can be reduced from O(N cD) to O(RD) ∼= O(D). Considering the outer “for” loop in line

4, the time complexity of the nondomination rank increasing process is O(N cD).
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According to the above analysis, the time complexity of the sorting approach is O(Mo(N c)2)+O(N cD)+780

O((N c) log(N c)). Since, in this paper, the number of objectives Mo = 2 and N c = 2N , the time com-

plexity of the modified nondominated sorting approach can be transformed to O(8(N)2) + O(2ND) +

O((2N) log(2N)) ∼= O(N2) +O(ND).
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