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Abstract—Particle swarm optimization (PSO) has been widely
used for feature selection (FS) in classification. However, FS is still
a challenging optimization task for PSO when the dimensionality
of data is high. In this paper, we propose a forward search
inspired PSO (FSIPSO) algorithm to build a wrapper-based
FS method. In FSIPSO, the search space dynamically changes
during the evolutionary process. Specifically, we rank the features
according to their single-feature classification performance and
divide the search space into several sub-spaces. A forward
search scheme is proposed to sequentially select the sub-spaces.
The selected sub-spaces construct the search space for FSIPSO.
With this scheme, FSIPSO first searches in a small space to
quickly find candidate solutions (feature subsets) with relatively
good performance. Then, the search space expands with the
selection of more sub-spaces, and FSIPSO can further select
informative features in the expanded search space. Moreover,
mutation operations are used in FSIPSO to avoid the premature
problem. The experimental results on 8 UCI datasets have shown
that FSIPSO obtains better FS results with less computation time
compared with benchmark PSO-based FS methods. FSIPSO also
obtains better convergence performance than these methods.

Index Terms—Particle swarm optimization, feature selection,
classification, sequential forward selection.

I. INTRODUCTION

With the development of data acquisition technologies, the
data with numerous features are more frequently collected in
real-world applications. This brings significant challenges for
machine learning tasks, including classification, since there are
a large number of noisy or redundant features in the collected
data. Feature selection (FS) has shown to be an effective
dimensionality reduction technique for classification, which
aims to select the informative features with respect to the
class label. The potential benefits of FS include improving the
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classification performance and interpretability of the learned
model, as well as reducing the computation time of the
learning algorithm [1].

FS can be depicted as an optimization problem that max-
imizes the classification performance by selecting the best
feature subset. This problem has shown to be NP-hard, and its
solution space substantially expands with the increase of the
data dimensionality (i.e., the number of original features) [2].
According to different evaluation criteria, FS can be classified
into filter methods and wrapper methods [3]. Filter methods
evaluate the potential classification performance of a feature
subset with measures based on distance, the information
theory, etc. In comparison, wrapper methods straightforwardly
use a classification performance measure to evaluate a feature
subset. Thus, wrappers generally obtain better classification
performance while requiring more computation time than
filters. Due to the high performance of wrappers, this paper
aims to build a wrapper-based FS method.

The search strategies play an important role in wrapper-
based FS methods since FS is an optimization problem. Two
generally used heuristics for wrapper-based FS are sequential
forward selection (SFS) and sequential backward selection
(SBS) [4], which are based on the hill-climbing search strate-
gies. In recent years, evolutionary computation (EC) tech-
niques, such as genetic algorithms [5], [6] and particle swarm
optimization (PSO) [7], [8], have been increasingly used as
the search strategy for FS due to their good global search
capabilities.

PSO [9], inspired by the birds flocking behavior, is a power-
ful EC technique with competent global search performance. A
large number of PSO-based FS methods have been developed
in recent years. For example, Xue et al. [8] proposed several
PSO-based FS variants, where different swarm initialization
and particle updating mechanisms are studied. Nguyen et al.
[10] proposed an FS method based on the sticky binary PSO
(SBPSO) algorithm, which adopts a dynamic mechanism to
balance the exploration and exploitation capabilities of the
algorithm. Tran et al. [11] proposed a bare-bone PSO-based FS



method that can simultaneously select and discretize features
for effective and efficient classification. Pratama et al. [12]
proposed an FS method that combines PSO with sequential
forward floating selection (SFFS), where SFFS is used as a
local search method to update the solutions. However, these
methods focus mainly on improving the FS performance, not
simultaneously the computational cost.

To improve the FS performance on high-dimensional data,
Gu et al. [13] used a PSO variant, called competitive swarm
optimizer (CSO), that adopts a pairwise competition solution
updating mechanism for FS. Li et al. [14] proposed an im-
proved binary PSO algorithm that adopts a feature-weighting-
directed initialization mechanism and a bits-masking-based
search space reduction mechanism to improve the FS perfor-
mance for high-dimensional data. Xue et al. [15] proposed
a PSO algorithm that adopts the feature weighting results of
ReliefF to guide the swarm initialization for FS. One limitation
of this method is that the final FS results are highly dependent
on the performance of ReliefF. Moreover, some studies handle
the high-dimensional FS problems with PSO using the sub-
space strategy. Tran et al. [16] proposed a PSO algorithm
with variable lengths of particles, which represent different
sub-spaces of the full search space, for high-dimensional FS.
Song et al. [17] proposed a cooperative coevolutionary PSO
algorithm that uses several sub-swarms in different sub-spaces
for high-dimensional FS. However, these two algorithms need
several user-defined parameters to dynamically manipulate the
sub-spaces during the evolutionary process. Thus, extensive
experiments for tuning the parameters are needed.

A. Goals

According to the above analyses, FS is a challenging
optimization problem especially when there are a large number
of features. SFS uses a forward search scheme that sequentially
selects features into the final feature subset. This heuristic
scheme substantially reduces the number of search steps and
reduces the required computational resources. However, one
limitation of SFS is that the global search ability is limited.
PSO is an EC technique with promising global search perfor-
mance. However, there are still limitations in existing PSO-
based methods on solving FS problems since the search space
significantly increases with the increase of data dimensionality.
To inherit the advantages of both SFS and PSO for FS, we
aim to build a PSO algorithm by embedding the forward search
scheme into the evolutionary process. This proposed algorithm
is called forward search inspired PSO (FSIPSO).

FSIPSO first divides the original search space into several
sub-spaces, where each sub-space is formed of a subset of
the features. Then, during the evolutionary process, a forward
search scheme is used to sequentially select the sub-spaces
to dynamically construct the search space. The solutions are
only allowed to be updated in the constructed search space.
FSIPSO also adopts the mutation operations to further improve
the global search performance. The performance of FSIPSO
is examined on 8 UCI datasets with more than 100 features.

Specifically, the following research points will be addressed
in this paper:

1) Design an algorithm (i.e., FSIPSO) that properly com-
bines the forward search scheme with PSO to improve
the FS performance,

2) Introduce mutation operations to the above algorithm to
improve the global search ability,

3) Compare the FS performance of FSIPSO with benchmark
PSO-based FS methods as well as SFS and SBS, and

4) Compare the search performance of FSIPSO with bench-
mark PSO algorithms.

II. BACKGROUND

This section briefly introduces the preliminaries of our
proposed method, including the main idea of PSO and how
PSO is applied to address FS problems.

A. Particle Swarm Optimization

In (standard) PSO [9], a swarm of particles is initialized,
where each particle’s position represents a solution in the
continuous search space. Specifically, the position of the ith
particle in the swarm can be denoted by a vector xi =
(xi1, xi2, ..., xiD), where D is the dimensionality of the search
space. In PSO, it is assumed that each particle is continuously
moving during the evolutionary process. Thus, each particle
i has a velocity, denoted by vi = (vi1, vi2, ..., viD). Each
particle updates its velocity vi and position xi according
to its personal experience and the global experience of the
swarm during the evolutionary process. Generally, the personal
experience is reflected by the best position (denoted by pbesti)
this particle has moved to, and the global experience is shown
by the best position (denoted by gbest) found by the swarm
so far. Based on these notations, the velocity vi and position
xi for the particle i at the tth generation is updated to

vt+1
id = w ∗vtid+c1 ∗r1 ∗ (pid−xtid)+c2 ∗r2 ∗ (gd−xtid) (1)

xt+1
id = xtid + vt+1

id (2)

where d = 1, 2, ..., D indicates the index of the considered
dimension in the search space, and pid and gd denote the
dth element of the pbesti and gbest. w, c1, and c2 are three
user-defined parameters controlling the evolutionary behavior
of PSO. Specifically, w is the inertia weight reflecting the
exploration intensity, and c1 and c2 reflect the impacts of
pbesti and gbset. r1 and r2 are two random values from the
uniform distribution U(0, 1).

B. Application of PSO to FS

Let the number of original features in the dataset be D.
For an FS problem, a particle position xi = (xi1, xi2, ..., xiD)
in PSO can be used to represent a feature subset (solution),
where each element xid (d = 1, 2, ..., D) denotes whether the
ith feature is selected or not by comparing it with a predefined
threshold parameter η. Specifically, xid > η (or xid ≤ η)
denotes the dth feature is selected (or eliminated).

The objective of an FS problem is to obtain a small feature
subset with good classification performance. It is suggested



in literature [18], [19] to use a combined fitness function
considering both the classification performance and the feature
subset size for an FS problem. In this paper, as suggested in
[19], we adopt the following combined fitness function

F (xi) = α ∗ acc(xi) + (1− α) ∗ (1− #xi

D
) (3)

where acc(xi) denotes the accuracy obtained by xi, #xi

denotes the the number of selected features by xi, and D is the
total number of original features. α ∈ (0, 1) and 1−α ∈ (0, 1)
reflects the weights of classification performance and feature
number to evaluate a feature subset’s fitness. In this paper,
we set α = 0.9 as suggested in [19], meaning that the
classification performance is much more important than the
number of selected features.

III. THE PROPOSED APPROACH

This section describes the proposed FSIPSO algorithm
in detail, including solution representation, the search space
construction strategy (described in Sections III-B, III-C, and
III-D), mutation operations, and overall algorithm.

A. Solution Representation

In FSIPSO, the position (which denotes a feature sub-
set) of a particle i is represented by a real vector xi =
(xi1, xi2, ..., xiD), where each xid ∈ [0, 1], d = 1, ..., D. Given
a predefined parameter η ∈ (0, 1), the dth feature is selected
(eliminated) by xi if xid > η (xid ≤ η).

B. Ranking Features

In FSIPSO, we first rank the features according to their
importance in descending order. This is beneficial that we can
construct sub-spaces with different utilities, where a sub-space
with a higher utility means that this sub-space has a potentially
higher probability containing more informative features. Thus,
we can design a search space construction scheme to make the
algorithm pay more effort on sub-spaces with higher utilities.
The feature ranking strategy has been used in many studies.
It can be based on a filter-based measure (e.g., symmetric
uncertainty (SU) [3], [16], [17], [20] and the attention-based
feature ranking mechanism [21]) or a wrapper-based mea-
sure (e.g., classification accuracy [22], [23]). In this paper,
a wrapper-based measure is used to rank features, since it
straightforwardly measures a feature’s predictive performance.
Specifically, the 5-fold cross-validation [4] is used based on
the training set to obtain the classification accuracy of every
single feature, and then the features are ranked according to
the accuracy rates in descending order.

C. Generating Sub-spaces

After ranking the features based on the accuracy measure,
we can divide the original search space into several sub-spaces.
Let the ranked feature set be Fs = {fs1 , fs2 , ..., fsD}, which
can be used to represent the original search space. Then, we

uniformly divide the search space into M sub-spaces. Each
sub-space can be represented by a feature subset denoted by

Fs
k = {fs

(k−1)∗ D
M +1

, fs
(k−1)∗ D

M +2
, ..., fs

k∗ D
M
}, k = 1, ...,M

(4)
where k is the index of the sub-space and D

M is the number of
features in each sub-space. According to the definition of Fs

k,
each sub-space has the same dimensionality D

M , and all the
sub-spaces compose the original search space, i.e., we have
Fs = Fs

1 ∪ Fs
2 ∪ · · · ∪ Fs

M . Moreover, since the division of the
search space is based on the ranked feature set Fs, the sub-
spaces Fs

k, k = 1, ...,M have different utilities. Specifically, a
lower value of k shows a higher utility of the sub-space Fs

k.

D. Constructing the Search Space with Forward Search

In this paper, a forward search scheme is used to dynam-
ically construct the search space Fc during the evolutionary
process. This scheme divides the evolutionary process of
FSIPSO into M (the number of sub-spaces) phases. The
1, 2, ...,M th sub-spaces are sequentially added into Fc to
construct the search space during the evolutionary process,
which means that a sub-space with a high utility has priority
to be selected in Fc. Specifically, the search space Fc at the
mth (m = 1, 2, ...,M ) evolutionary phase is obtained as

Fc = Fs
1∪, ...,∪Fs

m. (5)

FSIPSO is allowed to only evolve solutions in Fc, i.e., for a
particle’s velocity vi = (vi1, vi2, ..., viD) and position xi =
(xi1, xi2, ..., xiD), only the elements vid and xid, d ∈ Fc are
updated based on Eqs. (1) and (2).

E. Mutation Operations

To improve the global search performance, mutation opera-
tions are conducted in FSIPSO to further update the particles.
In FSIPSO, each element xid in a particle position xi is a
real value in [0, 1]. Let the elements in the particle position
updated by the PSO mechanism using Eqs. (1) and (2) be
xt+1
id , d ∈ Fc. The mutations operation is conducted to update

each xt+1
id to xt+1

id (d ∈ Fc) with the following equation:

xt+1
id =

{
1− xt+1

id if rand() < pm

xt+1
id else

, (6)

where rand() denotes a random value in [0, 1], pm is the
mutation rate determining the probability of an element to
mutate. Specifically, pm is defined as

pm = 1/|Fc|, (7)

where |Fc| is the number of features in Fc. Therefore, the
expected number of mutated elements in a particle is 1.

F. Overall Algorithm

The overall procedure of FSIPSO is shown in Algorithm 1.
First, the features are ranked according to the wrapper-based
accuracy measure described in Section III-B, and the sub-
spaces are generated with the procedure described in Section



III-C. Second, the search space is initialized as the first sub-
space, i.e., Fc = Fs

1. We initialize the swarm St in Fc since
FSIPSO only evolves new solutions in the search space Fc.
Specifically, for each particle position xt

i = (xti1, x
t
i2, ..., x

t
iD),

the elements xtid, d ∈ Fc are initialized as a random value in
[0, 1] and other elements xtik, k /∈ Fc are assigned as a value of
0. Third, during the iterations, FSIPSO first determines if the
algorithm should move to the next evolutionary phase or not.
Specifically, FSIPSO moves to the next evolutionary phase
every

⌊
T
M

⌋
generations. This setting ensures that the search

space with all features can be constructed before the algorithm
stops. Once the condition of changing the evolutionary phase
matches, the phase counter m is added by 1 and the search
space Fc is updated by further selecting/adding the sub-
space Fs

m into it with the forward search scheme. Since the
search space expands, we additionally initialize each particle
xt
i = (xti1, x

t
i2, ..., x

t
iD) in St in the added sub-space Fs

m, i.e.,
each xtid, d ∈ Fs

m is initialized as a random value in [0, 1].
The particle positions are then updated based on the PSO
solution updating mechanism (shown in Eqs. (1) and (2)) and
the proposed mutation operations (shown in Eq. (6)) in the
constructed search space Fc. Based on the updated particle
positions, the pbesti of each particle i and the gbest are
updated. Finally, after FSIPSO reaches the stopping criterion,
the gbest is returned as the found best solution (feature subset).

Note that, since the single-feature classification performance
is used to rank features in FSIPSO, the correlations among
features are not considered during the feature ranking step.
The redundant features might have a high importance value
according to the ranking measure. Thus, the ranked features
roughly but not precisely reflect their true importance in
descending order. However, since we use the combined fitness
function considering both the classification performance and
the number of selected features, the redundant features can be
removed during the evolutionary process of FSIPSO, which
addresses the feature correlation issue in FS.

IV. EXPERIMENT DESIGN

This section designs the experiments for verifying the
proposed method. The datasets, benchmark methods, and pa-
rameter settings used in the experiments are described below.

A. Datasets

Eight datasets of varying numbers of instances, fea-
tures, and classes from the UCI machine learning repository
(http://archive.ics.uci.edu/ml) [24] are employed in the exper-
iments. In each selected dataset, at least 100 features are
included. The details of the datasets are shown in Table I.

B. Benchmark Methods

Eight benchmark FS methods are adopted in the exper-
iments. First, the two conventional wrapper methods based
on hill-climbing search strategies, i.e., SFS [4] and SBS [4]
are used. Second, the FS method (denoted by PSO(C)) based
on the standard PSO [9] is used as the benchmark method,
since our method is established based on the standard PSO. In

Algorithm 1: Pseudo-Code of FSIPSO.
Input : The training set tra, maximum number of

generations T , swarm size S, number of the
evolutionary phases M ;

Output : The best solution (feature subset) x∗;

1 Rank the features based on tra using the wrapper-based
accuracy measure described in Section III-B;

2 Generate the sub-spaces Fs
1, ...,Fs

M based on the procedure
described in Section III-C;

3 Fc ← Fs
1 ; /* Initialize the search space. */

4 t← 0, m← 1;
5 St ← {xt

1,x
t
2, ...,x

t
S}, where each xt

i = (0)×D , i = 1, ..., S;
6 Initialize each particle’s velocity vt

i = (0)×D , i = 1, ..., S;
7 Initialize St in the search space Fc and evaluate the fitness

value for each particle in St based on Eq. (3);
8 Update pbesti for each particle i and update gbest;
9 while t < T do

10 if t > 0 && (t rem
⌊

T
M

⌋
) = 0 then

11 m← m+ 1;
12 Fc ← Fc ∪ Fs

m ; /* Update the search
space with forward search. */

13 Initialize St in the added sub-space Fs
m;

14 end
15 for i← 1 to S do
16 xt+1

i ← xt
i = (xt

i1, x
t
i2, ..., x

t
iD);

17 vt+1
i ← vt

i = (vti1, v
t
i2, ..., v

t
iD);

18 foreach d ∈ Fc do
19 vt+1

id , xt+1
id ← Update vtid and xt

id in vt+1
i and

xt+1
i using Eqs. (1) and (2);

20 xt+1
id ← Update xt+1

id in xt+1
i using the

mutation operation shown in Eq. (6);
21 end
22 Evaluate the fitness value of xt+1

i based on Eq. (3)
and update pbesti with xt+1

i ;
23 end
24 St+1 ← {xt+1

1 ,xt+1
2 , ...,xt+1

S };
25 Update gbest with St+1;
26 t← t+ 1;
27 end
28 return x∗ ← gbest;

PSO(C), the same combined fitness function as FSIPSO shown
in Eq. (3) is used. Finally, five wrapper methods based on
recently proposed continuous and binary PSO algorithms are
used as the benchmark methods to comprehensively evaluate
the performance of the proposed method. These methods
include PSO(4-2) [8], CSO(C) [25], CSO(A) [13], Up binary
PSO (UBPSO) [26] and SBPSO [19]. Specifically, PSO(4-
2) is a continuous PSO variant that adopts new initialization
and solution updating mechanisms designed for FS. CSO(A)
is established based on CSO for large-scale FS problems. In
PSO(4-2) and CSO(A), the accuracy is used as the fitness func-
tion as suggested in [8] and [13]. To comprehensively compare
the FS performance between FSIPSO and CSO, CSO(C) is
also adopted as a benchmark method. CSO(C) adopts CSO
[25] as the optimizer and uses the same combined fitness
function as FSIPSO. UBPSO and SBPSO are two binary PSO
algorithms. UBPSO dynamically increases the value of the
inertia weight during the evolutionary process. SBPSO adopts
a probability-based solution updating mechanism instead of



that used in traditional binary PSO. Similarly, UBPSO and
SBPSO adopt the same fitness function as FSIPSO.

TABLE I
DATASETS

Dataset #Instances #Features #Classes
Urban 675 147 9
Musk1 476 166 2
Arrhythmia 452 279 13
LSVT 126 310 2
Isolet5 1559 617 26
Mfeat 2000 649 10
InterAd 3279 1558 2
DrivFace 606 6400 3

C. Parameter Settings
In FSIPSO, PSO(C) and PSO(4-2), we set the maximum

number of generations as T = 100, the swarm size as S = 30,
the inter weight as w = 0.7298, and the two constants to
update the velocity as c1 = c2 = 1.49618 as suggested in [8].
The parameter that determines whether a feature is selected or
not in a real-coded particle is set as η = 0.6 as suggested in
[7] and [8]. The number of evolutionary phases in FSIPSO is
set as M = 5, which is based on several tuning experiments.
In CSO(C) and CSO(A), the same swarm size S = 30 as
FSIPSO is used. Since the CSO algorithm only updates S/2
particles at each generation, we set the maximum number
of generations in CSO(C) and CSO(A) as T = 200, twice
that of FSIPSO, to make a fair comparison. The parameters
φ and η in CSO(C) and CSO(A) are set as 0.1 and 0.5 as
suggested in [13]. In UBPSO and SBPSO, the same swarm
size S = 30 and the maximum number of generations T = 100
as FSIPSO are used. In UBPSO, the upper and lower bounds
of the inertia weight are set as w = 1 and w = 0.4, and the
parameter ρ is set as 0.9 according to [26]. In SBPSO, we
set the step parameter L = 50, and set the three parameters
to control the evolving behavior as im = 0.25, ip = 0.25,
and ig = 0.5 according to [19]. Finally, SFS and SBS use
the default settings in Waikato Environment for Knowledge
Analysis (Weka) [27].

In the experiments, the K nearest neighbor (KNN) [28]
classifier is used for its good performance and simplicity. The
number of neighbors is set as K = 5 as used in [8]. Each
original dataset is randomly divided into a training set (70%)
and a test set (30%). During the FS process with the wrapper-
based FS methods, the training set is further divided into 5
folds to perform an inner 5-fold cross-validation process to
evaluate the fitness values of solutions [4]. Then, after the FS
process, the test set is used to evaluate the performance of the
found feature subset of each method. The experiments on each
dataset with the stochastic FS methods (the methods except
SFS and SBS) run 30 times independently. The Wilcoxon
rank-sum test [29] with a significance level of 0.05 is used
to compare the results between FSIPSO and each benchmark
method. SFS, SBS, and KNN are implemented based on Weka,
and other FS methods are implemented based on Java. The
experiments are run on PCs with an 8 GB memory and a 3.4
GHz CPU.

TABLE II
FS RESULTS OF FSIPSO, SFS, AND SBS

Dataset Method #Features (std.) Tf BestA (%) MeanA (Std.)(%) Ta

Urban
FSIPSO 14.8 (2.8) 84.31 81.88 (1.48)
SFS 9.0 − 80.88 80.88 +
SBS 113.0 + 78.92 78.92 +

Musk1
FSIPSO 16.9 (2.4) 86.11 82.85 (2.51)
SFS 10.0 − 79.86 79.86 +
SBS 122.0 + 80.56 80.56 +

Arrhythmia
FSIPSO 22.4 (3.0) 72.99 70.17 (1.44)
SFS 19.0 − 70.80 70.80 −
SBS 110.0 + 61.31 61.31 +

LSVT
FSIPSO 15.4 (6.2) 94.87 87.69 (3.65)
SFS 4.0 − 76.92 76.92 +
SBS 55.0 + 84.61 84.61 +

Isolet5
FSIPSO 101.8 (11.3) 89.96 88.13 (0.82)
SFS 35.0 − 85.68 85.68 +
SBS N/A N/A N/A N/A N/A

Mfeat
FSIPSO 47.4 (5.3) 98.50 98.03 (0.30)
SFS 11.0 − 97.67 97.67 +
SBS N/A N/A N/A N/A N/A

InterAd
FSIPSO 113.9 (9.9) 97.97 97.45 (0.41)
SFS 14.0 − 96.65 96.65 +
SBS N/A N/A N/A N/A N/A

DrivFace
FSIPSO 483.5 (23.0) 97.27 96.48 (0.64)
SFS 9.0 − 93.99 93.99 +
SBS N/A N/A N/A N/A N/A

N/A: Not Available.

V. RESULTS AND DISCUSSION

This section first compares the results between FSIPSO
and SFS/SBS. Then, the FS results are compared between
FSIPSO and the PSO-based benchmark methods. Finally, the
computation time of the methods is compared.

A. Comparison with SFS and SBS

Table II shows the FS results of FSIPSO, SFS, and SBS. The
results of SBS on Isolet5, Mfeat, InterAd, and DrivFace are
not available (N/A), since the experiments on these datasets
did not finish within four days. In the table, #Features (std.)
and MeanA (Std.) denote the mean (standard deviation) of “the
number of selected features” and the mean (standard deviation)
of “accuracy” over the 30 experimental runs. BestA denotes
the best accuracy of the 30 experimental runs. In columns
Tf and Ta, the statistical significance test results from the
Wilcoxon rank-sum test comparing FSIPSO with SFS/SBS on
the #Features and MeanA measures are shown. Specifically,
“+” or “-” denotes that FSIPSO obtains significantly better or
worse results than the compared method, and “=” denotes that
there is no significant difference.

1) FSIPSO versus SFS: Compared with SFS, FSIPSO
obtains significantly higher mean accuracy rates on 7 of the
8 datasets, and only obtains a lower mean accuracy rate on
Arrhythmia. According to the number of selected features,
FSIPSO selects significantly more features than SFS on all
the 8 datasets. On some relatively lower-dimensional datasets,
e.g., Urban and Musk1, the numbers of features selected by
FSIPSO and SFS are close. Whereas, on relatively higher-
dimensional datasets, e.g., InterAd and DrivFace, SFS selects
substantially fewer features than FSIPSO. Seeing that FSIPSO
obtains better accuracy results than SFS, it is shown that SFS
may fail to select some informative features on the datasets.

2) FSIPSO versus SBS: Compared with SBS, FSIPSO ob-
tains higher mean accuracy rates while selecting fewer features
on the four available datasets, i.e., Urban, Musk1, Arrhythmia,
and LSVT. The statistical significance test results comparing
the two methods on the number of selected features and



accuracy are all significant. These results show that FSIPSO
obtains substantially better FS results than SBS.

B. Comparison with PSO-Based Benchmark Methods

The FS results of FSIPSO and the PSO-based benchmark
methods, including PSO(C), PSO(4-2), CSO(C), CSO(A),
UBPSO and SBPSO, are shown in Table III, where the same
notations as Table II are used. The comparisons between
FSIPSO and these PSO methods are shown below.

1) FSIPSO versus PSO(C) and PSO(4-2): Compared with
PSO(C), FSIPSO obtains significantly higher mean accuracy
rates on 6 of the 8 datasets, and obtains similar mean accuracy
rates on 2 datasets, Urban and Musk1. Moreover, FSIPSO
selects substantially fewer features than PSO(C) on all the
8 datasets. Similarly, the comparison between FSIPSO and
PSO(4-2) also reveals that FSIPSO obtains significantly better
mean accuracy rates (6 out of 8 datasets) while selecting sub-
stantially fewer features in most cases. In two cases, FSIPSO
obtains a similar or lower mean accuracy rate compared with
PSO(4-2), i.e., on Musk1 and Mfeat. These results show that,
in most cases, FSIPSO selects fewer features while obtaining
better accuracy results than PSO(C) and PSO(4-2).

2) FSIPSO versus CSO(C) and CSO(A): Compared with
CSO(C), FSIPSO obtains significantly higher mean accuracy
rates on 5 of the 8 datasets, obtains similar mean accuracy
rates on Urban and LSVT, and obtains a worse mean accuracy
rate on Musk1. Compared with CSO(A), FSIPSO obtains
significantly higher mean accuracy rates on 5 of the 8 datasets,
obtains similar mean accuracy rates on Urban and Mfeat, and
obtains a worse accuracy rate on Musk1. On all the datasets,
FSIPSO selects substantially fewer features than CSO(C) and
CSO(A). These results show that, in most cases, FSIPSO
obtains better or similar accuracy results while selecting fewer
features. FSIPSO outperforms CSO(C) and CSO(A).

3) FSIPSO versus UBPSO and SBPSO: Compared with
UBPSO, FSIPSO obtains significantly higher mean accuracy
rates on 4 of the 8 datasets, obtains similar mean accuracy
rates on Urban, Mfeat, and InterAd, obtains a worse accuracy
rate on Musk1. Compared with SBPSO, FSIPSO obtains
significantly higher mean accuracy rates on 6 of the 8 datasets,
obtains a similar mean accuracy rate on Urban, and obtains a
worse accuracy rate on Musk1. Seeing that FSIPSO selects
fewer features on all the datasets, we can conclude that
FSIPSO obtains better FS results than the two binary PSO
algorithms in most cases.

The above results show that FSIPSO substantially reduces
the number of selected features while obtaining similar or bet-
ter accuracy results than the benchmark PSO-based FS meth-
ods in most cases. Specifically, FSIPSO obtains 68.9%, 73.4%,
39.3%, 84.6%, 59.1%, 77.7%, 79.7% and 55.5% fewer features
than the second-best PSO-baed benchmark method (on reduc-
ing features) on the 8 datasets. This denotes that FSIPSO ob-
tains better feature reduction performance than the benchmark
PSO algorithms with the forward search scheme. Different
from the benchmark PSO algorithms, FSIPSO searches for
new solutions in a dynamically increasing search space. The

TABLE III
FS RESULTS OF FSIPSO AND PSO-BASED BENCHMARK METHODS

Dataset Method #Features (std.) Tf BestA MeanA (Std.) Ta

Urban

FSIPSO 14.8 (2.8) 84.31 81.88 (1.48)
PSO(C) 49.5 (5.9) + 84.80 81.62 (1.22) =
PSO(4-2) 63.1 (28.7) + 84.31 81.03 (1.53) +
CSO(C) 47.9 (5.0) + 84.31 81.75 (1.35) =
CSO(A) 66.1 (7.2) + 83.82 81.65 (1.15) =
UBPSO 51.0 (5.7) + 84.80 81.49 (1.66) =
SBPSO 47.5 (4.2) + 85.78 82.04 (1.70) =

Musk1

FSIPSO 16.9 (2.4) 86.11 82.85 (2.51)
PSO(C) 63.3 (7.7) + 89.58 84.21 (2.95) =
PSO(4-2) 67.6 (24.8) + 91.67 84.86 (3.42) −
CSO(C) 65.1 (5.8) + 91.67 87.66 (2.35) −
CSO(A) 78.2 (6.1) + 92.36 88.26 (2.18) −
UBPSO 64.2 (5.9) + 93.06 87.89 (2.43) −
SBPSO 67.4 (6.2) + 92.36 87.57 (2.12) −

Arrhythmia

FSIPSO 22.4 (3.0) 72.99 70.17 (1.44)
PSO(C) 93.5 (7.1) + 65.69 61.34 (1.83) +
PSO(4-2) 36.9 (16.4) + 72.99 65.62 (2.30) +
CSO(C) 95.3 (7.7) + 66.42 62.80 (1.73) +
CSO(A) 125.9 (9.4) + 67.15 62.68 (2.04) +
UBPSO 113.5 (8.9) + 66.42 63.02 (1.63) +
SBPSO 105.9 (8.3) + 64.96 62.72 (1.64) +

LSVT

FSIPSO 15.4 (6.2) 94.87 87.69 (3.65)
PSO(C) 106.1 (7.9) + 89.74 83.93 (3.01) +
PSO(4-2) 100.5 (57.9) + 92.31 84.53 (4.01) +
CSO(C) 113.2 (8.6) + 92.31 86.41 (3.10) =
CSO(A) 152.9 (7.1) + 89.74 84.79 (3.86) +
UBPSO 142.1 (8.5) + 89.74 83.42 (3.91) +
SBPSO 135.5 (9.2) + 92.31 84.36 (3.18) +

Isolet5

FSIPSO 101.8 (11.3) 89.96 88.13 (0.82)
PSO(C) 248.7 (14.8) + 86.54 84.08 (1.31) +
PSO(4-2) 313.3 (69.4) + 85.47 83.18 (1.30) +
CSO(C) 257.6 (12.7) + 88.46 86.92 (0.95) +
CSO(A) 291.4 (14.2) + 88.25 86.58 (0.82) +
UBPSO 274.7 (8.9) + 87.61 85.66 (0.97) +
SBPSO 268.8 (12.0) + 87.61 85.64 (1.08) +

Mfeat

FSIPSO 47.4 (5.3) 98.50 98.03 (0.30)
PSO(C) 212.7 (7.7) + 98.33 97.86 (0.32) +
PSO(4-2) 398.4 (69.0) + 98.33 97.96 (0.22) =
CSO(C) 219.1 (11.0) + 98.33 97.79 (0.27) +
CSO(A) 324.2 (10.3) + 98.50 97.96 (0.24) =
UBPSO 254.8 (11.2) + 98.33 97.90 (0.31) =
SBPSO 250.5 (11.5) + 98.33 97.77 (0.30) +

InterAd

FSIPSO 113.9 (9.9) 97.97 97.45 (0.41)
PSO(C) 561.0 (20.6) + 97.46 96.87 (0.43) +
PSO(4-2) 792.1 (121.2) + 97.26 96.76 (0.24) +
CSO(C) 620.2 (18.2) + 97.76 97.24 (0.34) +
CSO(A) 773.1 (25.5) + 97.87 97.20 (0.32) +
UBPSO 704.7 (16.4) + 97.76 97.31 (0.32) =
SBPSO 696.6 (15.4) + 97.76 97.13 (0.39) +

DrivFace

FSIPSO 483.5 (23.0) 97.27 96.48 (0.64)
PSO(C) 2362.5 (57.6) + 96.17 95.12 (0.40) +
PSO(4-2) 1085.7 (514.8) + 97.27 95.77 (0.77) +
CSO(C) 2796.0 (54.4) + 95.63 95.16 (0.37) +
CSO(A) 3200.1 (53.1) + 96.17 95.17 (0.56) +
UBPSO 3017.4 (33.1) + 96.17 95.28 (0.39) +
SBPSO 2971.2 (29.7) + 96.17 95.21 (0.37) +

initial search space of FSIPSO is much smaller than the space
with full features, and it has the highest potential utility since
the features are ranked. Hence, FSIPSO can quickly evolve
relatively good particles with a few features in the small initial
search space. During the following evolutionary phases, the
expansion of the search space allows particles in FSIPSO
to select new features in the added sub-spaces. However,
only when the selection of new features improves the fitness
values, the pbest and gbest can be updated. Thus, similar to
SFS, the forward search scheme makes FSIPSO favor feature
subsets with small sizes. This explains why FSIPSO performs
effectively in feature reduction.

C. Computation Time

Fig. 1 shows the average computation time taken by the
PSO-based FS methods over the 30 experimental runs and the



computation time taken by SFS and SBS. It is clearly shown
that FSIPSO requires substantially less computation time than
the benchmark methods except for SFS on the 8 datasets. SFS
is time-efficient because the time for evaluating feature subsets
can be substantially reduced as the adopted sequential forward
search strategy can keep the feature subsets to be evaluated
during the search process in a very small size. Similar to SFS,
FSIPSO starts the evolutionary process from a very small sub-
space and further selects informative features along with the
expansion of the search space. Therefore, the feature subsets
to be evaluated in FSIPSO are kept in small sizes during
the whole evolutionary process, and the computation time of
FSIPSO can be substantially reduced.
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Fig. 1. Computation time of each FS method.

VI. FURTHER ANALYSIS

In Section V, it has shown that FSIPSO obtains better
FS results than the PSO algorithms. We further compare
the convergence curves of FSIPSO and the compared PSO
algorithms in Fig. 2, where the x-axis denotes the number of
generations and the y-axis denotes the average fitness value of
gbest at each generation over the 30 runs. Except for FSIPSO,
only the convergence curves of PSO(C), CSO(C), UBPSO,
and SBPSO are drawn, because these algorithms use the same
fitness function as FSIPSO. It should be noted that the number
of generations of CSO(C) is twice that of other algorithms. We
choose the fitness values every two generations (i.e., the fitness
values at generations 0, 2, 4, ..., 200) to draw the convergence
curves of CSO(C) to facilitate the comparison.

According to Fig. 2, it is clearly shown that FSIPSO
obtains better convergence curves than the compared PSO
algorithms. FSIPSO can start and end with a higher fitness
value than all the compared PSO algorithms on each dataset.
This shows that FSIPSO obtains good search performance
for FS problems. Moreover, the effect of the forward search
scheme for search space construction can also be found in the

figure. For example, on Urban and Isolet5, the convergence
curves of FSIPSO have an obvious growing trend at generation
20 when a new sub-space is selected in the search space.

Two reasons can explain why the proposed forward search
scheme is effective for improving the search performance of
FSIPSO. First, since a dynamically increasing search space is
used, FSIPSO generally updates solutions in a space smaller
than that with all features. This actually reduces the search
space of FSIPSO compared with that of most other PSO-based
FS methods, and thus accelerates the evolutionary process.
Second, with the proposed forward search scheme, FSIPSO
first focuses on selecting features in the sub-space Fs

1 with the
highest utility. Thus, the informative features in the first sub-
space can be quickly found in the low dimensional space Fs

1.
Then, in the following evolutionary phases, FSIPSO can fur-
ther select informative features in the newly added sub-spaces
on the basis of the evolved particles in the previous phases.
Although the search space continuously increases during the
evolutionary process, at each phase, FSIPSO actually searches
for new solutions around the currently found solutions (with
potentially informative features). Therefore, compared with the
benchmark PSO algorithms that initialize and evolve solutions
in the space with all features during the whole evolutionary
process, the evolutionary performance of FSIPSO is improved.

VII. CONCLUSIONS

In this paper, a forward search inspired PSO algorithm (i.e.,
FSIPSO) is proposed for FS in classification. In FSIPSO, a
forward search scheme is used to dynamically construct the
search space from a relatively smaller sub-space. Moreover,
the mutation operations are adopted in FSIPSO to avoid the
algorithm being trapped into local optima. We have compared
the performance of FSIPSO with SFS, SBS, and several PSO-
based FS methods on 8 UCI datasets of varying difficulty.
The results show that FSIPSO can substantially reduce the
number of selected features while obtaining high classification
performance. In the meantime, FSIPSO requires much less
computation time than the compared PSO algorithms. Fur-
ther comparisons on the convergence curves also reveal that
FSIPSO obtains good convergence performance.

Compared with standard PSO, one additional user-defined
parameter, the number of evolutionary phases M , is required in
FSIPSO. It would be interesting to further examine the effects
of different values of M in FSIPSO and obtain a strategy
for properly setting M given different optimization problems.
In the future, we will further investigate FSIPSO with other
classifiers, such as light gradient boosting machines (GBM),
support vector machines (SVM), and random forests, in terms
of the accuracy, the number of features, and the computational
time. Moreover, we will compare FSIPSO with other state-of-
the-art FS methods in more detail using a controlled set of
experiments as that used in [30].
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