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Improved Binary Particle Swarm Optimization for Feature Selection with
New Initialization and Search Space Reduction Strategies

An-Da Lia,∗, Bing Xueb, Mengjie Zhangb

aSchool of Management, Tianjin University of Commerce, Tianjin 300134, China
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Abstract

Feature selection (FS) is an important preprocessing technique for dimensionality reduction in classification

problems. Particle swarm optimization (PSO) algorithms have been widely used as the optimizers for

FS problems. However, with the increase of data dimensionality, the search space expands dramatically,

which proposes significant challenges for optimization methods, including PSO. In this paper, we propose

an improved sticky binary PSO (ISBPSO) algorithm for FS. ISBPSO adopts three new mechanisms based

on a recently proposed binary PSO variant, sticky binary particle swarm optimization (SBPSO), to improve

the evolutionary performance. First, a new initialization strategy using the feature weighting information

based on mutual information is proposed. Second, a dynamic bits masking strategy for gradually reducing

the search space during the evolutionary process is proposed. Third, based on the framework of memetic

algorithms, a refinement procedure conducting genetic operations on the personal best positions of ISBPSO

is used to alleviate the premature convergence problem. The results on 12 UCI datasets show that ISBPSO

outperforms six benchmark PSO-based FS methods and two conventional FS methods (sequential forward

selection and sequential backward selection) — ISBPSO obtains either higher or similar accuracies with

fewer features in most cases. Moreover, ISBPSO substantially reduces the computation time compared with

benchmark PSO-based FS methods. Further analysis shows that all the three proposed mechanisms are

effective for improving the search performance of ISBPSO.

Keywords: Classification, feature selection, particle swarm optimization, initialization

1. Introduction

Feature selection (FS) has shown to be an essential preprocessing technique for classification and cluster

problems in machine learning and data mining scenarios [1, 2, 3]. It aims to select a subset of critical
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features from the original feature set because substantially irrelevant and redundant features are contained

in the data collected from the real-world applications. As summarized in [1], FS provides benefits such as5

improving the classification performance, reducing the time complexity, and enhancing the interpretability

of the learned model. In this paper, we mainly focus on FS for classification.

FS can be categorized into filter and wrapper approaches in terms of the used feature importance eval-

uation strategies [4]. A filter approach evaluates the features based on the intrinsic properties of the data

[5]. Feature weighting measures based on the information theory (e.g., symmetrical uncertainty [6], mutual10

information (MI) [7], and dispersion entropy [8]), distance measures (e.g., Relief [9] and ReliefF [10]), etc.,

are generally used to build filters. A wrapper approach evaluates the importance of a feature subset based

on the classification performance of a learning algorithm [11]. Wrappers generally cost more computation

time than filters since evaluating each feature subset requires training the learning algorithm. Meanwhile,

wrappers usually obtain better classification results since the classification performance is directly used for15

feature importance evaluation.

FS is reported to be an NP-hard problem that tries to find the best subset from 2N − 1 possible sub-

sets of features given a dataset with N features. This proposes a big challenge for the search strategies

applied to FS problems. Sequential forward selection (SFS) and sequential backward selection (SBS) are

two typical wrappers based on heuristics [12]. These two methods apply greedy search strategies to find20

the best feature subset, while they can be easily trapped into local optima. Metaheuristics, inspired by

various behaviors or phenomena in nature (e.g. the hunting behaviors), are widely recognized as powerful

optimization approaches. In recent years, many kinds of metaheuristics have been proposed for solving FS

problems. These metaheuristics include genetic algorithms (GAs) [13], particle swarm optimization (PSO)

[14], genetic programming (GP) [15], differential evolution (DE) [16], ant colony optimization (ACO) [17],25

and the artificial bee colony (ABC) algorithm [18]. In particular, an increasing number of studies have

applied PSO to FS [4].

Continuous PSO (CPSO), which simulates the behaviors of birds flocking or fish schooling, is a meta-

heuristic stochastic algorithm proposed by Kennedy and Eberhart [19] in 1995. A binary PSO (BPSO)

algorithm was proposed in 1997 to handle binary variables [20]. Both CPSO [21] and BPSO [22] have been30

used to build FS methods. BPSO can encode a feature subset more straightforwardly because each bit in a

particle’s position is either 1 or 0, which denotes whether a feature is selected or not. Recently, Xue et al.

[23] proposed a new probability-based BPSO (PBPSO) for FS, which shows to have better performance than

standard BPSO. Nevertheless, PBPSO lacks a very important concept of PSO, i.e., momentum. Nguyen et

al. [24] proposed a sticky BPSO (SBPSO) algorithm which introduces a stickiness parameter in PBPSO to35

mimic the momentum of a particle.

PSO-based wrappers have been studied a lot in recent years for their higher classification performance

than filters. The FS objective is to eliminate as many irrelevant and redundant features as possible. To
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achieve this objective, existing PSO-based wrappers mainly adopt an integrated fitness function combining

maximizing the classification performance and minimizing the feature subset size [23, 24, 25, 26, 27]. How-40

ever, with the increase of data dimensionality, the search space of FS problems expands exponentially. This

causes a problem that a satisfactory feature subset with a few key features may not be found because the

numerous feasible feature subsets (solutions) propose significant challenges for PSO considering the limited

computational resources. In other words, PSO algorithms typically evolve too slowly to achieve a good FS

result for high dimensional data. Therefore, improving the evolutionary effectiveness and efficiency of PSO45

algorithms is always a key task for PSO-based wrappers.

In this paper, we propose a novel PSO-based wrapper method for FS. The proposed FS method adopts

an improved SBPSO (ISBPSO) algorithm as the optimizer, where three novel mechanisms are adopted based

on SBPSO to enhance the search performance:

a) We propose a feature weighting directed initialization (FWDI) method to improve the quality of the50

initial swarm. FWDI adopts the feature weighting results based on MI to initialize the particles, where

the bits (features) with higher weights are given higher probabilities to be initialized as 1.

b) We propose a dynamic bits masking (DBM) strategy to narrow the search space of ISBPSO. This strategy

iteratively puts a mask on the features every certain number of generations to stop these features from

further evolving. Such a strategy can substantially narrow the search space during the evolutionary55

process, which is beneficial for ISBPSO to find better solutions in a smaller search space.

c) Inspired by the idea of memetic algorithms, we propose a refinement procedure for ISBPSO that conducts

the genetic operations to update the personal best position (pbest) of each particle. The pbest of each

particle is a key factor of the evolutionary mechanism of PSO algorithms. Thus, updating the pbests

with genetic operators, i.e., crossover and mutation, can help ISBPSO to escape from the local optima.60

We will test the proposed FS method on 12 datasets from the UCI repository [28] to investigate whether

the proposed ISBPSO algorithm is effective and efficient for FS.

The remainder of this paper is organized as follows. Section 2 presents the background and related works.

Section 3 introduces the proposed ISBPSO-based FS approach. Section 4 describes the experimental design.

Section 5 presents the parameter study results of ISBPSO. Section 6 presents and discusses the FS results65

of the proposed method and benchmark methods. Further analysis of the proposed method is provided in

Section 7. Finally, Section 8 gives the conclusions.

2. Background

This section provides the basic concepts of MI and SBPSO, which are the basic components of the

proposed approach, followed by an overview of related work on FS.70
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2.1. Mutual Information (MI)

MI, a basic concept of Shannon’s information theory, can capture both the linear and non-linear relations

between two random variables [29]. Entropy, which measures the uncertainty of a variable, is a basic

component of MI. For a discrete variable X ∈ X, the entropy H(X) is obtained as

H(X) = −
∑
x∈X

p(x) log p(x), (1)

where p(x) denotes the prior probability of X = x. Given another discrete variable Y ∈ Y, the conditional

entropy H(X|Y ) is obtained as

H(X|Y ) = −
∑
y∈Y

∑
x∈X

[p(x, y) log p(x|y)], (2)

where p(x|y) is the posterior probability of X = x given Y = y, and p(x, y) is the joint probability of X = x

and Y = y. In information theory, the MI of variables X and Y is defined as

I(Y ;X) =
∑
y∈Y

∑
x∈X

[p(y, x) log
p(y, x)

p(y)p(x)
]. (3)

Thus, we obtain a different form of MI based on Eqs. (1) and (2) as

I(Y ;X) = H(X)−H(X|Y ), (4)

which is also the definition of information gain (IG). If variables X and Y are continuous, MI is defined as

I(Y ;X) =

∫ ∫
p(y, x) log

p(y, x)

p(y)p(x)
dydx. (5)

In the case of continuous variables, estimating the probability distributions of X or Y is hard, which

complicates the calculation of Eq. (5). A proper way is discretizing continuous variables first, and then

using Eq. (4) to calculate MI [1]. In this paper, the minimum description length (MDL) method [30] is

used to discretize the continuous variables. Based on the above definitions, given a dataset with a set F =75

{F1, F2, ..., FN} of features and a class variable C, we can obtain a feature weight vector W = (w1, w2, ..., wN )

using the MI measure, where each wd, d = 1, 2, ..., N , is calculated as

wd = I(C;Fd). (6)
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2.2. Sticky BPSO (SBPSO)

SBPSO [24] is a recently proposed BPSO variant that adopts the flipping probability instead of velocity

in the traditional BPSO algorithm to update a particle’s position. To retain the momentum characteristic80

of PSO, a stickiness parameter is used in SBPSO making a particle tends to stick to the position it just

moved to.

Suppose that the swarm size is K, each particle’s position, flipping probability, and stickiness parameter

vectors at the tth generation are denoted by Xt
i = (xti,1, x

t
i,2, ..., x

t
i,N ), Pt

i = (pti,1, p
t
i,2, ..., p

t
i,N ), and St

i =

(sti,1, s
t
i,1, ..., s

t
i,N ), where xti,d ∈ {0, 1}, pti,d ∈ [0, 1], sti,d ∈ [0, 1], d = 1, 2, ..., N , i = 1, 2, ...,K. At each

generation, SBPSO uses Pt+1
i to update particle i’s position from Xt

i to Xt+1
i . Specifically, each bit xti,d

(d = 1, 2, ..., N) in Xt
i is updated to xt+1

i,d as

xt+1
i,d =

1− xti,d ; rand() < pt+1
i,d

xti,d ; otherwise

, (7)

where rand() is a random value in [0, 1] from the uniform distribution. The probability vector Pt+1
i is

updated from Pt
i. Each pt+1

i,d in Pt+1
i is obtained as

pt+1
i,d = im · (1− sti,d) + ip · |pbesti,d − xti,d|+ ig · |gbestd − xti,d|, (8)

where sti,d, pbesti,d, and gbestd denote particle i’s stickiness parameter, pbest, and the global best position

(gbest) on the dth bit, respectively. ip and ig determine particles’ moving tendency to gbest and gbest.

According to Eq. (8), sti,d > 0 lowers the flipping probability of pt+1
i,d , and the intensity of this tendency is

decided by im. SBPSO sets im + ip + ig = 1 to ensure the maximum value of pt+1
i,d is 1, and the default

settings are im = 0.25, ip = 0.25, and ig = 0.5 since gbest affects the movements of particles more than pbest

and the momentum. The stickiness parameter sti,d decreases over time, which means that a bit is likely to

stick to the new position it just move to. And st+1
i,d at each generation is calculated as

st+1
i,d =

s
t
i,d − 1/L ;xt+1

i,d = xti,d, s
t
i,d > 0

1 ;xt+1
i,d 6= xti,d

, (9)

where the step parameter L is a constant that determines the number of generations a stickiness parameter

decreases from 1 to 0. It can be seen in Eq. (9), the stickiness parameter changes to 1 when a flip happens.

In SBPSO, the initial stickiness parameter s0i,d = 1, d = 1, 2, ..., N .85
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2.3. Related work on feature selection

This section briefly reviews the existing metaheuristics for FS. Here, we categorize these approaches into

the non-PSO and PSO-based methods and review them in the following two sub-sections.

2.3.1. Metaheuristic-based (non-PSO) feature selection methods

In recent years, various metaheuristics have been proposed for building FS methods. Among these90

methods, GAs are one of the most popular metaheuristics used for solving FS problems. Some studies have

applied single objective GAs to FS. Oh et al. [13] proposed a hybrid GA-based FS method that applies local

search operations in addition to the genetic operations to improve the FS performance. However, applying

the local search also increases the computation time of the search algorithm. Freeman et al. [31] proposed

a tree-based classification method that adopts a GA to simultaneously select features and optimize the tree95

structure. However, since one additional optimization task, i.e., optimizing the tree structure, is involved

in addition to FS, the search space is increased which further impacts the final search performance of the

GA. Similarly, Tao et al. [32] proposed a GA-SVM based hospitalization expense modeling method, which

uses a GA for simultaneously selecting features and tuning the parameters in support vector machines. In

addition to single objective GAs, multi-objective GAs have also been used for FS. Zhu et al. [33] proposed an100

improved NSGA-III algorithm for FS in intrusion detection. This method adopts a novel niche preservation

strategy to improve the global search performance of the proposed improved NSGA-III algorithm. Li et

al. [34] proposed a hybrid multi-objective optimization method combining the search mechanism of GAs

with that of direct multi-search for selecting key features (quality characteristics) in production processes

related to product quality. The multi-objective GA-based FS methods return a set of feature subsets. Hence,105

strategies for selecting the final feature subset should be further studied from a practical point of view.

Other metaheuristics, such as GP, DE, ACO, and ABC, have also been used for FS. Nag and Pal [35]

designed a GP algorithm that minimizes three objectives, i.e., false positives, false negatives, and the number

of leaf nodes in the tree, for simultaneously selecting features and designing a GP-based classifier. Hancer

et al. [16] proposed two versions (single objective and multi-objective) of DE for building FS methods.110

In this study, the relevance and redundancy measures based on ReliefF, fisher score, and MI are built.

These measures are further optimized by DE for obtaining a feature subset with a good relevance property

while containing a few redundant features. Zhang et al. [36] proposed a FS method that optimizes both

the accuracy and feature subset size based on a multi-objective binary DE algorithm. To improve the FS

performance, the proposed DE algorithm applies a local search step to further update the solutions after115

applying the DE operators, while additional computation time for the local search step is needed. Tabakhi

and Moradi [17] proposed a FS method based on ACO. The proposed method uses ACO to obtain the

feature weights and select features according to the weights. However, this method needs a predefined

number of features to be selected. Hancer et al. [18] proposed an ABC-based FS method, which integrates

6



evolutionary-based similarity search mechanisms in a binary ABC variant to improve the FS performance.120

Moreover, Shunmugapriya and Kanmanib [37] proposed a hybrid algorithm combining the search mechanisms

of ACO and ABC for FS. Although various metaheuristics have been used for solving FS in literature, it is

worth further examining effective strategies to improve the convergence speed of the metaheuristics for the

high-dimensional FS problems which have a very large search space.

2.3.2. PSO-based feature selection methods125

The PSO algorithms, including both CPSO and BPSO, have been widely used for FS since PSO has the

advantages of promising global search performance and fast convergence.

In the applications of CPSO to FS, each particle position is encoded as a real vector, where each

element in the vector corresponds to a feature. Each element is compared with a predefined threshold

parameter to decide whether the corresponding feature is selected or not. The CPSO and its variants130

have been widely applied to FS problems in recent years. Xue et al. [21] studied several initialization and

updating mechanisms considering the number of selected features for CPSO-based wrappers. However, the

initialization mechanisms studied are still based on randomization which does not consider the intrinsic

characteristics of data. Competitive particle optimization (CSO) is a CPSO variant recently proposed in

[38] for large scale optimization problems. In CSO, a particle learns from a better particle randomly selected135

from the swarm, rather than learns from the pbest and gbest used by standard CPSO. Gu et al. [39] adapted

CSO to high dimensional FS problems. However, this approach does not adopt any other strategies designed

for FS to improve the feature reduction efficiency. Comprehensive learning PSO (CLPSO) is another CPSO

variant, in which a particle learns from its pbest or an exemplar (particle) chosen by the binary tournament

selection from the swarm [40]. Tran et al. [41] proposed a FS method based on the CLPSO algorithm.140

In this method, particles are set as vectors of different lengths, and the short-length particles are used to

promote the method to select fewer features. However, how to decide a good combination of particle lengths

needs to be further investigated. Being a CPSO variant, bare bones PSO (BBPSO) has also been used for

building FS methods [42]. Zhang et al. [43] proposed a BBPSO-based FS method, which also adopts a

uniform combination strategy to avoid the premature convergence problem. Tran et al. [42] proposed a FS145

method that adopts BBPSO for simultaneously selecting and discretizing features. In BBPSO, a Gaussian

distribution based on the pbest and gbest is generated to decide the position of a particle without using

the velocity. However, the generated Gaussian distribution of BBPSO may not be sufficiently good for FS,

which is a combinatorial optimization problem, since BBPSO is proposed by analyzing the particle position

distribution of continuous optimization problems [44]. Chen et al. [27] proposed a CPSO variant named150

HPSO-SSM for FS. HPSO-SSM embeds a spiral-shape updating mechanism as the spare particle updating

strategy. However, strategies for improving the search performance for high dimensional FS are not designed

in this method.
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In addition to the single objective CPSO algorithms, multi-objective CPSO algorithms have also been

established for FS. Xue et al. [45] established two multi-objective CPSO-based FS methods, i.e, CMDPSOFS155

and NSPSOFS. The experimental results have shown that CMDPSOFS that adopts the ideas of crowding,

mutation, and dominance obtain better FS performance than NSPSOFS and existing GA-based FS methods.

Additionally, local search strategies have also been embedded in multi-objective CPSO algorithms to improve

the FS performance. For example Nguyen et al. [46] proposed a multi-objective CPSO-based FS method

called ISRPSO which adopts several kinds of local search operations, including inserting, removing, and160

swapping, to improve the FS performance. Amoozegar and Minaei-Bidgoli [47] proposed a multi-objective

CPSO-based FS method called RFPSOFS which adopts a process to refine the archive set during the

evolutionary process to improve the FS process. Local search can improve the search performance of PSO

whereas it also increases the computation time of the algorithm.

BPSO reduces the search space compared with CPSO for FS since each bit of a particle position is165

either 1 or 0 instead of a continuous value in CPSO [41]. In recent years, the BPSO-based FS methods

have been widely studied. Huang and Dun [48] applied the BPSO to simultaneously find the best feature

subset while optimizing the parameters for an SVM. Mafarja et al. [49] studied the effects of time inertia

weighting changing strategies used in BPSO for FS. The results have shown that gradually decreasing the

inertia weight can improve the performance of BPSO for FS. Banka and Dara [25] introduced the hamming170

distance to the velocity updating procedure of BPSO, which is further applied to FS in high-dimensional

data. Zhang et al. [22] proposed a FS method for spam detection using a modified BPSO algorithm. The

proposed method applies the mutation operator to improve the global search performance of BPSO. Moradi

and Gholampour [50] proposed a hybrid PSO algorithm that combines the solution updating mechanism of

BPSO with a local search technique to select distinct features by considering the correlation information175

of features. Jain et al. [51] proposed a two-stage FS method for gene selection and cancer classification

based on correlation-based feature selection (CFS) and BPSO. In this method, the CFS method is first used

to filter some features, and BPSO is used to further obtain the final feature subset. The above mentioned

BPSO-based FS methods are based on the standard framework of the BPSO proposed in [20], where a

sigmoid function is used to convert each element of the velocity to a value in (0,1), which is the probability180

to set a bit in the particle position as 1. However, the velocity used in BPSO proposes an opposite effect

for evolving new solutions compared with that in CPSO, which lowers the performance of BPSO [52]. In

[53], the performance of BPSO and CPSO on FS problems was compared. The results show that BPSO

performs worse than CPSO although FS is a combinatorial optimization problem. To address the limitations

of traditional BPSO, PBPSO [23] and SBPSO [24] were proposed and applied to FS problems. These two185

methods adopt a flipping probability vector instead of the velocity vector in traditional BPSO algorithms

to update each particle’s position. Moreover, SBPSO can be seen as an improved version of PBPSO. In

SBPSO, a stickiness parameter is used to depict the momentum of particles to further improve the search
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performance.

In summary, both CPSO and BPSO algorithms have been studied for FS. However, the growth of data190

dimensionality proposes significant challenges for optimizers (including PSO) in FS, as the search space

of FS problems expands exponentially with the increase of data dimensionality. Therefore, improving the

effectiveness and efficiency of PSO algorithms considering the intrinsic properties of FS problems is worth

studying. In this paper, we will explore three mechanisms from the perspectives of swarm initialization,

search space reduction, and premature alleviation for SBPSO to improve its FS performance.195

3. The proposed approach

This section proposes the ISBPSO algorithm for FS. First, basic elements for FS are introduced. Second,

the FWDI method which initializes the swarm using feature weighting results of MI is proposed. Third, the

DBM strategy that dynamically narrows down the search space during the evolutionary process is proposed.

Fourth, the genetic operations for alleviating the premature convergence problem are introduced. Finally,200

the overall ISBPSO-based FS approach is given.

3.1. Basic elements for FS

3.1.1. Solution encoding

Given a dataset with N features, a particle’s position is encoded as a binary vector X = (x1, x2, ..., xN ).

Each bit xd ∈ {0, 1}, d = 1, 2, ..., N , where 1 denotes the dth feature is selected, and 0 denotes it is not205

selected.

3.1.2. Fitness function

The wrapper framework is adopted to build the FS method. Therefore, the classification accuracy of a

learning algorithm is used to determine the fitness of a particle position (i.e, a feature subset). As well as

the classification performance, selecting a small feature subset is another goal of FS. Thus, in this paper,

a fitness function combining the accuracy and the percentage of eliminated features is used as in [24, 23].

This fitness function is defined as

Fit(X) = θ · acc(X) + (1− θ) · (1−#X/N), (10)

where acc(X) denotes the estimated classification accuracy of the feature subset X, #X denotes the number

of selected features, θ and 1 − θ denote the weights of the classification accuracy and the percentage of

eliminated features, respectively. We set θ = 0.9 as used in [24] because classification performance is a more210

critical factor in FS. To avoid the FS bias, a wrapper-based FS method usually uses the K-fold CV [12]

on the dataset fed to the FS method to estimate the classification performance of a feature subset. In this

paper, the 5-fold CV is adopted to estimate acc(X) in Eq. (10) as used in [12].
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3.2. Feature weighting directed initialization (FWDI)

Random initialization (RI) is commonly used for initializing particles in a PSO algorithm. Generally,215

in a BPSO algorithm, a position bit is set to 1 or 0 with a predefined probability. RI is a critical step for

initializing a sufficiently diversified swarm. However, RI does not consider the intrinsic characteristics of

data, which can provide useful initialization information for PSO to start with a higher quality swarm. MI

introduced in Section 2 is a typical feature weighting method with very low computational complexity, and

can catch both the linear and non-linear relations between features and the class label to rank features.220

Thus, we propose a novel initialization method for ISBPSO using MI.

Without loss of generality, suppose that W = (w1, w2, ..., wN ) is a weight vector from a feature weighting

method. Each weight wd > 0, d = 1, ..., N , denotes the importance level of feature d measured by the

weighting method (higher is better). For a particle position X0
i = (x0i,1, x

0
i,2, ..., x

0
i,N ), let P = (p1, p2, ..., pN )

be the probability vector, where each element pd, d = 1, ..., N , denotes the probability to initialize the dth225

bit (feature) as 1. A high probability value should be assigned to the bit with a high weight for obtaining

a high quality initial swarm. To achieve this goal, a transfer function can be used to convert the weights to

probability values for the initialization, since a transfer function can convert a real value in [0, 1]. Generally,

there are two types of transfer functions, S-shaped and V-shaped transfer functions [54]. An illustration of

the two types of transfer functions is shown in Fig. 1. According to Fig. 1, a S-shaped transfer function230

tends to convert a smaller number to a value closer to 0 and convert a larger number to a value closer to 1.

In comparison, a V-shaped transfer function converts a number with a larger absolute value to a value closer

to 1. Since our objective is converting a higher weight value to a higher probability value and vice versa,

we choose the S-shaped transfer function to construct the initialization method. For more details about the

S-shaped and V-shaped transfer functions, please refer to [54].235
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Figure 1: Illustration of S-shaped and V-shaped transfer functions.

In this paper, we construct the initialization method for ISBPSO based on the logistic function, which

is one typical S-shaped transfer function. Let z ∈ R be a variable, the standard logistic function transforms
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z to z′ as

z′ = 1/[1 + e−z]. (11)

Two key issues should be addressed when transforming a feature weight to a probability value using the

logistic function:240

a) The ranges of obtained weights can be very different on different datasets. So, a normalization method

is required before using the logistic function for a stable transformation. We normalize a feature weight

w to a value z ∈ [−σ, σ] (σ ∈ R+) as

z =
2σ(w −min(w))

max(w)−min(w)
− σ, (12)

where min(w) and max(w) denote the minimum and maximum weights in W.

b) If z′ in Eq. (11) is directly used as the probability, the bits (features) with weights close to the maximum

weight value would be easily set to 1 for every particle, which can dramatically decrease the swarm

diversity. To cope with this problem, we lower the upper bound of z′ by transforming it to a value

p ∈ (0, λ), λ ∈ (0.5, 1), as

p = λz′. (13)

According to Eqs. (11), (12), and (13), we obtain a modified logistic function that transforms a feature

weight w into a probability p as

p = λ/[1 + exp(− 2σ(w −min(w))

max(w)−min(w)
+ σ)]. (14)

An illustration of the standard and modified logistic functions is shown in Fig. 2.

Standard Logistic Funtion Modified Logistic Funtion

Figure 2: Illustration of the standard logistic function in Eq. (11) and the modified logistic function in Eq. (14), where λ = 0.8
and σ = 10.
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Based on the modified logistic function in Eq. (14), we propose the FWDI method for swarm initial-

ization. Let W = (w1, w2, ..., wN ) be the feature weight vector from MI. This vector can be transformed

into a probability vector P = (p1, p2, ..., pN ) using Eq. (14) on each wd, d = 1, 2, ..., N . Each particle i’s245

(i = 1, 2, ...,K) initial position X0
i = (x0i,1, x

0
i,2, ..., x

0
i,N ) can be initialized by setting each bit x0i,d to 1 with

the probability pd, d = 1, 2, ..., N , and we can obtain the initial swarm of ISBPSO.

3.3. Dynamic bits masking (DBM) strategy

Traditionally, a PSO algorithm searches in a fixed N -dimensional (where N is the number of original

features) space during the evolutionary process. This requires enormous computational resources by setting250

a large number of particles or generations in PSO algorithms when N is large (e.g., hundreds, thousands,

or even more). Thus, it is beneficial to propose a search space reduction strategy that is able to reduce the

required computational resources for PSO applied to FS tasks.

In this paper, we propose a search space reduction strategy named dynamic bits masking (DBM), which

uses a mask to dynamically reduce the search space of ISBPSO during the evolutionary process. Fig. 3 gives255

an illustration of the mask. In the mask, the bits to be masked are denoted in gray. The masked bits in the

particles are stopped from further evolving, which can decrease the search space. Two key issues related to

the DBM strategy are a) how to update the mask and b) when to update the mask.

x1 x2 x3 x4 x5 x6

x1 x2 x3 x4 x5 x6

Particle 

Mask

Bits can evolve

=

Bits can not evolve

1 2 3 4 5 6

Figure 3: Illustration of the mask vector.

First, we select the bits to be masked by extracting the information from particles’ pbests. In most

traditional PSO-based FS methods, the selected and eliminated features are finally decided when the PSO260

algorithms reach a stopping criterion. However, the information of particles during the evolutionary process

is not sufficiently used, which can provide us useful information to further improve the optimization per-

formance. In a FS task, the numbers of selected features of all particles decrease during the evolutionary

process. The noisy or irrelevant features can be decided even before the stopping criterion is reached. If a

feature (bit) is not selected by all the pbests in the swarm after several generations, it is very possible that265

this feature is an irrelevant feature, because the solutions with this feature are very likely to be eliminated

for bad fitnesses. According to the above analysis, we obtain the mask updating strategy. That is, a bit is
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masked if it is not selected by all pbests in the swarm.

Algorithm 1 shows the pseudocode of the mask updating strategy. In the algorithm, particles’ pbests

are denoted by a set pbests, a set Mu = {d1, d2, ..., dB} is used to denote the mask, where each element in270

Mu corresponds to an unmasked bit. The set Mu is updated by extracting the information from particles

in the swarm. If a bit is not selected by all the pbests in the swarm, the bit is eliminated from Mu. The

set Mu is updated during the evolutionary process of the algorithm. Every time the mask updating process

is conducted, some bits in Mu would be masked (i.e., eliminated from the set). Since only the bits in Mu

can evolve, the mask updating strategy ensures the decrease of the search space. Moreover, we conduct an275

amending step to set the value of each masked bit in the particles of the swarm as 0 (see line 5), hence the

search space indicated by Mu can be consistent with the particles. Then, we can safely change the position

updating mechanism shown in Eq. (7) to

xt+1
i,d =


(1− xti,d) ; rand() < pt+1

i,d , d ∈Mu

xti,d ; rand() ≥ pt+1
i,d , d ∈Mu

0 ; d /∈Mu

. (15)

Algorithm 1: Pseudocode of the mask updating strategy

Input : pbests = {pbest1, pbest2, ..., pbestK}, particle positions St = {Xt
1,X

t
2, ...,X

t
K} where

Xt
i = (xt

i,1, x
t
i,2, ..., x

t
i,N ), i = 1, ...,K, index set of unmasked bits Mu = {d1, d2, ..., dB} ;

Output : Updated Mu, updated St ;

1 for d ∈ Mu do

2 if
∑K

i=1 pbesti,d = 0 then
3 Mu ← Mu\{d} ;
4 for i← 1 to K do
5 xt

i,d ← 0;
6 end

7 end

8 end
9 return Mu and St ;

Second, to decide when the mask Mu should be updated during the evolutionary process, a parameter

µ ∈ (0, 1) is used. It means that the mask Mu is updated every µ · T generations, where T is the maximum280

number of generations. As stated above, the mask updating strategy is proposed under the assumption

that the effectiveness of a bit to be masked has been tested in several preceding generations. Thus, before

updating the mask, the optimizer needs to search for enough generations in the space decided by the previous

mask. In Section 5, we will conduct tuning experiments to select a proper value for µ.
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3.4. Genetic operations285

Being a PSO algorithm, SBPSO updates each particle’s position by exchanging information among its

current position, its pbest and the gbest. This strategy makes SBPSO efficiently search for better solutions,

however, may also cause the problem of premature convergence due to the quick decrease of the swarm di-

versity. Memetic algorithms generally use a refinement procedure (e.g., a local search procedure) in addition

to the global search process to improve the search performance of a population-bases search algorithm [55].290

Therefore, conducting a refinement procedure in ISBPSO can be a useful strategy to handle the premature

convergence problem. GAs mainly use the crossover and mutation operators to update solutions. The

crossover operator enables exchanging information among solutions and the mutation operator can increase

the population diversity to help the algorithm escape from local optima. Inspired by this, the genetic oper-

ations are used as a a refinement procedure for ISBPSO to further improve the global search performance.295

The refinement procedure is conducted on the pbest of each particle. The improvement on the pbest can

further improve the particle positions and gbest during the evolutionary process, which is beneficial for

improving the evolutionary performance of ISBPSO.

Algorithm 2: Pseudocode of the genetic operations

Input : pbests = {pbest1, pbest2, ..., pbestK}, index set of unmasked bits Mu, gbest, crossover probability
pc, and mutation probability pm ;

Output : Updated pbests and gbest;

/* Crossover, pbestoi = (pbestoi,1, pbest
o
i,2..., pbest

o
i,N ), i = 1, ...,K. */

1 O = {pbesto1, pbesto2, ..., pbestoK} ← Crossover(pbests, pc) ;

/* Mutation. */

2 for i← 1 to K do
3 for d ∈ Mu do
4 if rand() < pm then
5 pbestoi,d ← 1− pbestoi,d ;
6 end

7 end

8 end

9 pbests← A set Q of K best positions in O ∪ pbests ;
10 Update gbest with pbests ;
11 return pbests and gbest ;

Algorithm 2 shows the pseudocode of the genetic operations, which is proposed to update each particle’s

pbest. First, a set O of offspring positions is generated by the crossover operator. Specifically, the binary300

tournament selection is applied to select K/2 pairs of parents, and then the single point crossover operator is

applied to generate K offspring positions with a crossover probability of pc. Then, the single point mutation

operator with a mutation probability of pm is applied to each position in O. In this paper, pc = 0.9 is

adopted in the experiments as suggested in [56]. Note that, only the unmasked bits are permitted to mutate

which ensures that the mutation operator only updates pbests in the search space indicated by the mask.305
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We set the mutation rate pm = 1/(N − |Mu|) (| | denotes the number of elements in a set), which makes

the expected number of mutation bits in a particle position be 1. Finally, a set Q with K best positions in

O∪pbests are used to update pbests and gbest. Note that, it is possible that some positions in Q are already

in current pbests, which means that these positions are not updated by the genetic operations. Therefore,

the indices of non-updated positions in Q should be the same as those in pbests, since each position’s index310

in pbests determines the particle this position corresponds to. Moreover, it is also required to decide when

to conduct the genetic operations in Algorithm 2. In this paper, we mainly use genetic operations as an

assistant strategy to alleviate the premature convergence problem. We conduct the genetic operations only

when gbest is not updated for ϕ · T generations, where ϕ ∈ (0, 1) is a user-defined parameter and T is the

maximum number of generations.315

3.5. Overall approach

The overall procedure of the ISBPSO-based FS method is shown in Algorithm 3. The proposed approach

first uses the FWDI method to initialize a set St (t = 0) of particles. Then, at each generation, whether

the algorithm reaches the condition for updating the mask or conducting the genetic operations is checked.

Specifically, the mask is updated every µ · T generations, and the genetic operations are conducted if gbest320

is not updated for ϕ · T generations. Note that, if the genetic operations are conducted, such a generation

does not conduct the PSO evolutionary process. Thus, the expected number of fitness function evaluations

at each generation is equal to the swarm size, which makes a fair comparison with other methods in the

experiments.

Computation time is one key performance measure to evaluate a FS method. For a metaheuristic FS325

method based on the wrapper framework, the evolutionary process and the fitness function evaluation

process are two time-consuming parts. The fitness function evaluation process is time-consuming because in

a wrapper approach a learning algorithm is involved to evaluate the fitness of each feature subset. However,

theoretically evaluating the time cost of the fitness function evaluation process is hard, since the computation

time for each function evaluation is highly related to the number of features contained in the feature subset.330

In other words, given the same original dataset, evaluating a smaller feature subset requires less computation

time than evaluating a larger feature subset. This characteristic of the wrapper framework indicates that if

a metaheuristic can quickly reduce the number of features, this method can perform more time-efficiently

on fitness evaluations.

Based on the above discussion, here we analyze the time complexity of the proposed ISBPSO algorithm335

without considering the fitness function evaluation process. Suppose that there are K particles in the swarm,

the maximum number of generations is T , the length of particles is N (the original number of features), and

the number of instances in the dataset is M . We can reach the following analysis results.

First, we analyze the time complexity of the FWDI method, i.e., line 3 of Algorithm 3. The time
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Algorithm 3: Pseudocode of ISBPSO-based FS method

Input : The training dataset with N features, maximum number of generations T , swarm size K;
Output : A set Fs of selected features;

1 t← 0, Mu ← {1, 2..., N} ;
2 Pt

i ← (0)×N , St
i ← (1)×N , i = 1, 2, ...,K ;

3 St = {Xt
1,X

t
2, ...,X

t
K} ← Initialize each particle’s position using the FWDI method proposed in Section 3.2;

4 Evaluate the fitness value of each particle in St using Eq. (10) ;
5 Update pbests and gbest ;
6 while t < T do
7 if mask updating condition satisfied then
8 Mu ← Update Mu using Algorithm 1 ;
9 St+1 ← St ;

10 end
11 if genetic operations conducting condition satisfied then
12 Update gbest and pbests using Algorithm 2 ;
13 else
14 for particle i← 1 to K do
15 Pt+1

i ← Update i’s probability vector using Eq. (8) ;

16 Xt+1
i ← Update i’s position using Eq. (15) ;

17 St+1
i ← Update i’s stickiness parameter vector using Eq. (9) ;

18 Evaluate the fitness value of i using Eq. (10) ;
19 Update i’s pbest ;

20 Update gbest using Xt+1
i ;

21 end

22 St+1 ← {Xt+1
1 ,Xt+1

2 , ...,Xt+1
K } ;

23 end
24 t← t + 1 ;

25 end
26 Fs ← Decode gbest ;
27 return Fs ;

complexity of FWDI is formed of two parts, feature weighting using MI and particle initialization. The340

feature weighting step needs to evaluate each feature’s weight by calculating the MI between the feature

and the class label. The time complexity of calculating the MI value for a feature is O(M) [57], which is

related to the number of instances. Thus, the complexity of the feature weighting step is O(MN). The

time complexity of the particle initialization step is O(KN). Therefore, the time complexity of the FWDI

method is O(MN) +O(KN).345

Second, we analyze the time complexity of the main loop of Algorithm 3 from lines 6 to 25. At generation

t, if the mask vector updating step in line 8 of Algorithm 3 is conducted, the time complexity of this step

is O(KBt) according to the pseudocode shown in Algorithm 1, where Bt is the number of unmasked bits

at generation t and Bt ≤ N . The time complexity of the genetic operations in line 12 of Algorithm 3 is

O(K) +O(K) +O(KBt) ∼= O(KBt) which are formed of the binary tournament selection (O(K)), crossover350

(O(K)), and mutation operators (O(KBt)). The time complexity of the PSO evolutionary process shown

in lines 14 to 21 of Algorithm 3 is O(KBt), which is equal to that of the genetic operations step. Therefore,
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for a generation t, if the mask updating step and the genetic operations step (or the PSO evolutionary

process) are both conducted, the time complexity of this generation is O(KBt) +O(KBt) ∼= O(KBt). Since

Bt denotes the number of unmasked bits at generation t and Bt is smaller than or equal to the length of355

particles N , the time complexity of ISBPSO at generation t is smaller than or equal to O(KN). Thus, we

can reach the conclusion that the time complexity of the main loop of ISBPSO during the T generations is

not larger than O(TKN), which is the time complexity of the main loop of the standard CPSO and SBPSO

algorithms. In the worse case, when no bit is masked during the evolutionary process, the time complexity

of the main loop of ISBPSO is O(TKN).360

Finally, considering both the initialization step and the main loop, the time complexity of ISBPSO is

O(MN)+O(KN)+O(TKN) ∼= O((M +TK)N) in the worse case. It can be seen that the time complexity

of ISBPSO is not only related to the swarm size and the number of features but also related to the number of

instances in the dataset. This is because that the feature weighting strategy is used to guide the initialization

of ISBPSO, and the time complexity of this step is related to the number of instances. But of course, as365

discussed earlier, the actual computation time taken also depends heavily on the time for wrapper-based

fitness evaluations.

4. Experimental design

This section describes the datasets, benchmark methods, parameter settings, and experimental configu-

ration used for testing the effectiveness of the proposed method.370

4.1. Datasets

12 datasets from the UCI machine learning repository [28] (http://archive.ics.uci.edu/ml) are used in

the experiments to validate the proposed ISBPSO-based FS method. The numbers of features and instances

of these datasets vary from tens to thousands, and both binary and multiclass classification problems are

included. The details of these datasets are shown in Table 1, where the datasets are listed in terms of the375

number of features in ascending order, and “ID” is used to denote each dataset for simplicity.

4.2. Benchmark methods

Eight benchmark methods based on the wrapper framework are used to test the effectiveness and effi-

ciency of ISBPSO. They are SBPSO [24], Up BPSO (UBPSO) [58], Quantum BPSO (QBPSO) [59], CSO(C)

[39], CSO(A) [39], CPSO [21], SFS [12], and SBS [12]. The SBPSO algorithm is used to test if the new380

mechanisms added in ISBPSO are effective. UBPSO is a recently proposed BPSO variant, which adopts

a linearly increasing scheme for the inertia weight to improve the search performance. QBPSO is another

recently proposed BPSO variant that uses the quantum computing mechanism to update particles. In this

paper, we adapt UBPSO and QBPSO to FS problems, where the same fitness function as ISBPSO is adopted
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Table 1: Details of datasets.

Dataset ID #Features #Instances #Classes
Sonar Sonar 60 208 2
Libras Movement Movement 90 360 15
Hill-valley Hillvalley 100 1212 2
Urban Land Cover Urban 147 675 9
Musk (Version 1) Musk1 166 476 2
Arrhythmia Arrhythmia 279 452 13
LSVT Voice Rehabilitation LSVT 310 126 2
Madelon Madelon 500 2600 2
Isolet5 Isolet5 617 1559 26
Multiple Features Mfeat 649 2000 10
Internet Advertisements InterAd 1558 3279 2
DrivFace DrivFace 6400 606 3

in these two algorithms to make a fair comparison. CSO(C) and CSO(A) are two FS methods based on the385

CSO algorithm. Specifically, CSO(A) [39] is a wrapper-based FS method that adopts CSO as the optimizer

and accuracy as the fitness function. To better compare the performance of ISBPSO and CSO, we develop

the CSO(C) method by replacing the fitness function of CSO(A) with the same fitness function used in

ISBPSO. CPSO is a variant of the standard CPSO algorithm. It adopts a new initialization mechanism

and new updating mechanisms for pbest and gbest to improve the FS performance. In CPSO, the swarm is390

initialized by combining particles that select around 10% of features and particles that select over 50% of

features. Although accuracy is used as the fitness function, the number of selected features is considered as

well in CPSO when updating pbest and gbest. Specifically, if two particles have the same fitness value, the

one that selects fewer features is considered to be better. SFS and SBS are two conventional methods that

use greedy search strategies for FS.395

4.3. Parameter Settings

In ISBPSO and SBPSO, we set swarm size K = 30, maximum number of generations T = 100, and step

parameter L = 50 as used in [24]. Moreover, for ISBPSO, the parameters used by the FWDI method are

set as λ = 0.5 and σ = 10, and the condition parameters for updating the mask and conducting the genetic

operations are set as µ = 0.25 and ϕ = 0.05. These parameters are set based on a set of tuning experiments400

(see Section 5 for details). In UBPSO and QBPSO, the same swarm size K = 30 and maximum number of

generations T = 100 as ISBPSO are used to make a fair comparison. The upper bound of inertia weight w,

lower bound of inertia weight w, and fraction of generations for changing the inertia weight ρ in UBPSO are

set as 1, 0.4 and 0.9 as suggested in [58]. The two parameters θmax and θmin that determine the magnitude of

the rotation angle of QBPSO are set as 0.05π and 0.01π as suggested in [59]. In CSO(A) and CSO(C), each405

element in a particle is set as a real value in [0, 1], and a threshold parameter λ = 0.5 is used to determine

if a feature is selected or not, and the parameter φ is set as 0.1 as suggested in [39]. The swarm size is set
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as K = 30 as used in ISBPSO. CSO(C) and CSO(A) only evolve a half of the swarm at a generation, which

means that each generation generate a half of new solutions compared with ISBPSO. Therefore, to make

a fair comparison, the maximum number of generations of CSO(A) and CSO(C) is set as T = 200, twice410

that used in ISBPSO. This guarantees the same number of fitness function evaluations are used in ISBPSO,

CSO(A) and CSO(A). In CPSO, the parameter settings are the same as those in [21]. Specifically, swarm

size K = 30, maximum number of generations T = 100, w = 0.7298, and c1 = c2 = 1.49618. Each element

in a particle of CPSO is a real value in [0, 1], and a threshold parameter λ = 0.6 is used to determine if a

feature is selected or not [21].415

4.4. Experimental Configuration

In this paper, K nearest neighbor (KNN) [60] is used as the classifier for its high performance and

simplicity to test the FS methods. In KNN, we set K = 5 as that used in [21, 24]. SFS, SBS, and the KNN

classifier are directly invoked from Waikato Environment for Knowledge Analysis package (Weka 3.8.2) [61],

and the other methods are programmed in Java. All the experiments are run on PCs with a 3.4 GHz CPU420

and 8 GB memory.

We run two sets of experiments. The first set of experiments aims to find a proper setting for the unique

parameters proposed in ISBPSO. These parameters are λ and σ for the initialization method (FWDI), and

the condition parameters µ and ϕ for updating the mask and conducting the genetic operations. Several

tuning experiments are conducted on the representative datasets for obtaining a good enough parameter425

setting for ISBPSO. We adopt fitness value as the measure to evaluate the performance of different parameter

settings. A proper parameter setting is selected for ISBPSO based on the representative datasets, and it

is then used in the second set of experiments. The second set of experiments aims to compare the FS

performance of ISBPSO with that of the benchmark methods on all the datasets. In the experiments, each

dataset is randomly divided into a training set (70%) and a test set (30%). The training set is fed to a430

FS method to obtain a feature subset. The test set, which is the unseen data for the FS method, is then

used to validate the classification performance of the features selected by the FS method. The results and

discussions on the two sets of experiments are shown in Sections 5 and 6, respectively.

5. Parameter study

Compared with SBPSO, λ, σ, µ, and ϕ are four unique parameters added in ISBPSO. In this section, we435

aim to find a proper setting for the four parameters based on the experiments on the three representative

datasets, Sonar, Musk1, and DrivFace, which have 60, 166, and 6400 features, respectively. As shown in Eq.

(14), parameters λ and σ define the shape of the modified logistic function, which has potential impacts on

the performance of the FWDI method of ISBPSO. Parameters µ and ϕ decide the frequencies of updating the
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mask and adopting the genetic operations. As there are four parameters in total, simultaneously tuning all440

the parameters would require numerous experiments, which is hard considering the computational resources.

Note that our purpose is to obtain a proper parameter setting (not the optimal setting which is problem-

dependent) for ISBPSO. Therefore, we use a two-phase strategy to design experiments to obtain a good

enough (not necessarily the best) parameter setting. Since λ and σ are the two parameters related to the

initialization process of ISBPSO. In the first phase, we examine different settings of λ and σ for ISBPSO.445

Specifically, we examine five values of λ (i.e., 0.5, 0.6, 0.7, 0.8, and 0.9) and five values of σ (i.e., 5, 10, 15,

20, and 25). Thus, the combination of different values on the two parameters yields 25 parameter settings.

We repeat the experiment on each parameter setting 10 times, which leads to 250 runs of experiments on

each dataset. Note that, in the experiments, the parameters µ and ϕ are intuitively set as two constants,

i.e., µ = 0.20 and ϕ = 0.05. After we decide a proper setting for λ and σ, we conduct the second phase450

tuning experiments to select a proper setting for µ and ϕ. We examine five values of µ (i.e., 0.10, 0.15, 0.20,

0.25, and 0.30) and four values of ϕ (i.e., 0.05, 0.10, 0.15, and 0.20). Thus, the combination of different

values on the two parameters yields 20 parameter settings. Similarly, the experiment on each parameter

setting of µ and ϕ is repeated 10 times, which leads to 200 runs of experiments on each dataset.

Figs. 4 and 5 show the boxplots of the fitness values obtained by ISBPSO with different values of λ and455

σ on the Sonar, Musk1, and DrivFace datasets. On each dataset, the fitness values from the experiments

that using the given values of λ or σ are used to draw the boxplot. For example, for the “Sonar” boxplot

in Fig. 4, the experimental results with parameter settings {(λ, σ)|λ ∈ {0.5}, σ ∈ {5, 10, ..., 25}} are used

to draw the distribution of fitness values with λ = 0.5. According to Fig. 4, the fitness value distributions

on all the given values of λ are similar on Sonar. On Musk1 and DrivFace, the fitness value distributions460

decline along with the increase of λ, and this trend shows more significantly on DrivFace which has a larger

number of features. A possible reason for this result is that, for high dimensional data with a large number of

features, a large number of redundant features are often included. Given a large λ for the swarm initialization

process of ISBPSO, the bits (features) of high weights (but may be redundant with each other) would be

initialized as 1 in almost all particles. This actually decreases the swarm diversity and results in bad final465

optimization results. Considering the overall performance of different λ values on the three datasets, we

suggest λ = 0.5 for ISBPSO. According to Fig. 5, there is not much difference on the distributions with

different values of σ on Sonar and Musk1. Specifically, on Sonar, σ = {5, 10, 15} obtain slightly better fitness

values than σ = {20, 25}. On Musk1, the highest median of fitness values is obtained with σ = 10, and the

variation of fitness values is small. This suggests that σ = 10 is the most desirable setting for σ on Musk1.470

On DrivFace, σ = {10, 15, 20, 25} obtain significantly better fitness values than σ = 5. The results with

σ = {10, 15, 20, 25} do not differ a lot, however, we can find that σ = 15 gives slightly better results than

other σ values. Considering the results with different σ values, σ = 10 generally gives desirable fitness value

results on the three datasets. Therefore, we suggest σ = 10 for ISBPSO. To sum up, according the results
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in Figs. 4 and 5, we obtain a proper setting for λ and σ, i.e., λ = 0.5 and σ = 10.475

0.5 0.6 0.7  0.8 0.9

0.860

0.870

0.880

0.890

0.900

0.910

F
it
n
e
s
s
 V

a
lu

e

Sonar

0.5 0.6 0.7  0.8 0.9

0.890

0.895

0.900

0.905

0.910

F
it
n
e
s
s
 V

a
lu

e

Musk 1

0.5 0.6 0.7  0.8 0.9

0.970

0.972

0.974

0.976

0.978

0.980

F
it
n
e
s
s
 V

a
lu

e

DrivFace

Figure 4: The boxplots of fitness values obtained by ISBPSO with different values of λ on the representative datasets.
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Figure 5: The boxplots of fitness values obtained by ISBPSO with different values of σ on the representative datasets.

Figs. 6 and 7 show the boxplots of the fitness values obtained by ISBPSO with different values of µ

and ϕ on the Sonar, Musk1, and DrivFace datasets. According to Fig. 6, there is not much difference on

the results of different values of µ on the three datasets. Specifically, µ = 0.25 gives slightly better fitness

values than other settings on Sonar, and µ = 0.10 gives slightly better fitness values than other settings on

Musk1. On DrivFace, µ = 0.10 gives slight worse fitness values than other settings, and the results obtained480

with µ = {0.15, 0.20, 0.25, 0.30} do not vary too much. Generally, µ = 0.25 can obtain high and stable

distributions of fitness values on all the three datasets. Thus, we suggest µ = 0.25 for ISBPSO. According

to Fig. 7, there is not much difference on the distributions of fitness values obtained by different values

of ϕ on Sonar. Specifically, ϕ = 0.10 obtains slightly better fitness values than other settings. On Musk1

and DrivFace, we discover a trend that with the increase of ϕ the fitness values decrease. It is obvious that485

ϕ = 0.05 obtains better distributions than other values of ϕ. A possible reason for the above results is that,

on higher dimensional data, ISBPSO would be more likely to be trapped into local optima, and setting ϕ as

a smaller value (adopting the genetic operations more frequently) is a useful strategy to avoid the problem.

Considering the results on all the three datasets, we suggest ϕ = 0.05 for ISBPSO. To sum up, according to

the results in Figs. 6 and 7, we obtain a proper setting for µ and ϕ, i.e., µ = 0.25 and ϕ = 0.05.490

Based on the above analyses, we obtain a reasonable setting for the four parameters of ISBPSO, i.e.,

λ = 0.5, σ = 10, µ = 0.25, and ϕ = 0.05. In the following sections, the experimental results of ISBPSO with
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Figure 6: The boxplots of fitness values obtained by ISBPSO with different values of µ on the representative datasets.
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Figure 7: The boxplots of fitness values obtained by ISBPSO with different values of ϕ on the representative datasets.

the suggested parameter setting are presented and analyzed to validate the proposed ISBPSO algorithm.

6. Comparisons on feature selection results

This section compares the effectiveness and time efficiency between ISBPSO and the benchmark methods,495

SBPSO, UBPSO, QBPSO, CSO(C), CSO(A), CPSO, SFS, and SBS. As the methods except for SFS and

SBS are based on stochastic search strategies, we run the experiments 40 times with different running seeds

for these stochastic methods to better analyze the results. Mann-Whitney U-test [62] with a significance

level of 5% is used to test the statistical significance. The remainder of this section is structured as follows.

First, the FS results of ISBPSO are compared with those of PSO-based benchmark methods. Second, the500

FS results of ISBPSO are compared with those of the two conventional methods, i.e., SFS and SBS. Third,

the computation time of the methods is compared.

6.1. Comparisons with PSO-based methods

Table 2 shows the comparison results between ISBPSO and PSO-based benchmark methods. In the

table, “#Features (Std.)” denotes the average and standard deviation of feature subset sizes (number of505

selected features) over the 40 runs, “MeanA (Std.)” denotes the average and standard deviation of accuracies

over the 40 runs, and “BestA” denotes the best accuracy rate of the 40 runs. Columns Sf and Sa show the

statistical significance test results of feature subset size and accuracy, where “+” or “−” denotes ISBPSO
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Table 2: Comparisons of feature selection results between ISBPSO and PSO-based methods.

Dataset Method #Features (std.) Sf BestA MeanA (Std.) Sa Dataset Method #Features (std.) Sf BestA MeanA (Std.) Sa

Sonar

ISBPSO 11.0 (2.6) 85.71 80.32 (2.59)

LSVT

ISBPSO 17.3 (7.3) 94.87 87.76 (3.41)

SBPSO 21.2 (3.3) + 87.30 80.64 (2.90) = SBPSO 136.9 (8.7) + 92.31 84.87 (3.43) +

UBPSO 21.2 (3.0) + 88.89 81.94 (3.04) − UBPSO 141.9 (8.7) + 89.74 83.65 (3.70) +

QBPSO 20.3 (3.5) + 87.30 82.42 (2.65) − QBPSO 133.8 (7.8) + 89.74 85.19 (3.36) +

CSO(C) 21.4 (2.7) + 88.89 82.54 (2.74) − CSO(C) 117.3 (9.9) + 94.87 85.26 (3.80) +

CSO(A) 26.9 (3.7) + 87.30 82.26 (2.43) − CSO(A) 154.1 (10.0) + 94.87 85.00 (3.46) +

CPSO 25.4 (6.6) + 87.30 82.06 (2.36) − CPSO 103.6 (48.9) + 92.31 85.06 (3.57) +

Movement

ISBPSO 18.1 (2.7) 79.63 73.38 (2.57)

Madelon

ISBPSO 7.2 (1.3) 90.51 86.61 (2.29)

SBPSO 33.4 (4.9) + 77.78 69.72 (3.25) + SBPSO 222.4 (12.0) + 64.10 61.47 (1.36) +

UBPSO 31.8 (3.8) + 76.85 69.47 (2.89) + UBPSO 224.6 (12.1) + 65.39 61.91 (1.87) +

QBPSO 27.4 (4.1) + 77.78 70.60 (2.74) + QBPSO 213.6 (11.6) + 66.41 63.03 (1.87) +

CSO(C) 29.6 (4.2) + 76.85 71.13 (2.66) + CSO(C) 213.9 (10.2) + 66.92 62.94 (1.79) +

CSO(A) 46.1 (4.7) + 73.15 69.14 (2.11) + CSO(A) 230.6 (12.0) + 66.92 62.32 (1.65) +

CPSO 49.0 (14.5) + 74.07 68.94 (2.09) + CPSO 214.7 (91.2) + 67.44 60.38 (2.73) +

Hillvalley

ISBPSO 14.3 (3.0) 55.07 50.73 (2.06)

Isolet5

ISBPSO 130.6 (21.0) 90.17 88.43 (1.02)

SBPSO 25.6 (3.2) + 53.97 50.53 (1.36) = SBPSO 268.1 (11.0) + 87.61 85.72 (1.03) +

UBPSO 27.1 (3.7) + 53.42 50.93 (1.56) = UBPSO 275.8 (9.3) + 87.61 85.81 (0.97) +

QBPSO 21.9 (3.8) + 54.80 50.86 (1.50) = QBPSO 252.7 (10.6) + 88.46 87.07 (0.91) +

CSO(C) 27.1 (3.5) + 54.52 50.73 (1.65) = CSO(C) 261.0 (11.4) + 88.89 86.60 (0.93) +

CSO(A) 43.8 (5.1) + 53.97 50.55 (1.24) = CSO(A) 288.8 (11.4) + 88.03 86.48 (0.80) +

CPSO 19.4 (5.8) + 54.80 51.02 (1.86) = CPSO 350.2 (51.6) + 86.11 83.24 (1.27) +

Urban

ISBPSO 17.7 (3.4) 86.77 83.74 (1.62)

Mfeat

ISBPSO 30.4 (4.5) 99.33 98.19 (0.42)

SBPSO 48.2 (5.7) + 85.78 82.08 (1.56) + SBPSO 250.9 (12.0) + 98.67 97.79 (0.33) +

UBPSO 51.3 (5.7) + 84.80 81.48 (1.52) + UBPSO 253.2 (10.9) + 98.33 97.86 (0.30) +

QBPSO 42.9 (5.8) + 84.80 82.19 (1.44) + QBPSO 223.3 (12.0) + 98.50 97.87 (0.32) +

CSO(C) 46.6 (4.8) + 85.29 81.92 (1.32) + CSO(C) 211.3 (11.0) + 98.50 97.84 (0.32) +

CSO(A) 67.2 (6.1) + 85.29 81.84 (1.31) + CSO(A) 327.9 (14.4) + 98.33 97.95 (0.19) +

CPSO 61.8 (24.3) + 84.31 81.43 (1.45) + CPSO 400.6 (53.7) + 98.33 97.91 (0.24) +

Musk1

ISBPSO 37.4 (6.2) 91.67 85.92 (2.96)

InterAd

ISBPSO 47.4 (18.9) 98.27 97.35 (0.56)

SBPSO 67.2 (5.7) + 92.36 87.73 (2.19) − SBPSO 695.5 (15.9) + 97.76 97.15 (0.39) =

UBPSO 64.0 (5.5) + 93.06 87.76 (2.51) − UBPSO 704.2 (17.3) + 97.76 97.28 (0.33) =

QBPSO 62.4 (6.1) + 93.06 88.54 (2.56) − QBPSO 662.5 (14.8) + 97.97 97.38 (0.30) =

CSO(C) 63.3 (5.1) + 91.67 87.38 (2.19) − CSO(C) 621.2 (15.8) + 97.87 97.19 (0.38) =

CSO(A) 82.5 (7.2) + 91.67 88.23 (2.01) − CSO(A) 774.5 (17.6) + 97.76 97.28 (0.33) =

CPSO 72.1 (23.9) + 89.58 84.91 (2.77) = CPSO 789.5 (120.6) + 97.76 96.82 (0.40) +

Arrhythmia

ISBPSO 14.8 (4.4) 73.72 71.13 (1.89)

DrivFace

ISBPSO 309.0 (44.2) 98.91 97.08 (0.80)

SBPSO 107.3 (8.0) + 65.69 62.70 (1.63) + SBPSO 2972.2 (38.0) + 96.17 95.23 (0.37) +

UBPSO 112.2 (9.4) + 66.42 62.90 (1.63) + UBPSO 3013.4 (36.7) + 96.17 95.33 (0.39) +

QBPSO 100.2 (8.6) + 67.88 63.76 (2.04) + QBPSO 2866.7 (40.6) + 95.63 95.20 (0.36) +

CSO(C) 94.8 (7.6) + 66.42 63.18 (1.86) + CSO(C) 2803.6 (46.5) + 96.72 95.30 (0.49) +

CSO(A) 127.3 (7.7) + 67.15 62.68 (1.76) + CSO(A) 3197.9 (41.6) + 95.63 95.29 (0.39) +

CPSO 53.1 (15.1) + 69.34 64.82 (2.38) + CPSO 1305.0 (449.8) + 96.72 95.37 (0.63) +

obtains significantly better or worse results than the compared method, and “=” denotes that there is no

(statistically) significant difference.510

Compared with SBPSO, ISBPSO obtains better FS results on most datasets. ISBPSO obtains signifi-

cantly better results on both feature subset size and accuracy on 8 datasets and obtains significantly smaller

feature subset sizes with similar accuracies on 3 datasets, Sonar, Hillvalley, and InterAd. ISBPSO only

obtains a worse FS result than SBPSO on Musk1, where ISBPSO obtains a significantly lower accuracy

rate with fewer features. This denotes that ISBPSO may eliminate some informative features, which lowers515
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the accuracies in some cases. Additionally, for the higher dimensional datasets (Arrhythmia to DrivFace),

ISBPSO selects substantially fewer features than SBPSO. For instance, on Arrhythmia, ISBPSO only selects

14.8 features on average over the 40 runs, whereas SBPSO selects 107.3 features.

Compared with the two BPSO variants (UBPSO and QBPSO) and the two CSO algorithms (CSO(C)

and CSO(A)), ISBPSO obtains better FS results on most datasets. Specifically, ISBPSO obtains both better520

accuracy and feature subset size results on 8 datasets and obtains similar accuracies with fewer features on

2 datasets, Hillvalley and InterAd. ISBPSO obtains worse results than these benchmark methods on 2

datasets, Sonar and Musk1, since it obtains significantly lower accuracies. Additionally, ISBPSO selects

substantially fewer features compared with these methods. The above results denote that ISBPSO performs

more effectively than UBPSO, QBPSO, CSO(C), and CSO(A) in most cases.525

Compared with CPSO, ISBPSO obtains better FS results on most datasets. Specifically, ISBPSO obtains

both significantly better feature subset size and accuracy results on 9 datasets and obtains similar accuracies

with fewer features on 2 datasets, Hillvalley and Musk1. ISBPSO performs worse than CPSO on Sonar,

where ISBPSO obtains a significantly lower accuracy rate than CPSO. Moreover, in terms of the number of

selected features, ISBPSO selects substantially fewer features than CPSO on all the datasets.530

To sum up, the proposed ISBPSO algorithm obtains higher accuracies while selecting fewer features

compared with the PSO-based FS methods in most cases. Among these methods, ISBPSO, SBPSO, UBPSO,

QBPSO, and CSO(C) adopt the same fitness function defined in Eq. (10) as ISBPSO. The fact that ISBPSO

outperforms these methods with the same fitness function indicates that ISBPSO obtains better optimization

results than these PSO algorithms. Compared with SBPSO, the novel mechanisms added in ISBPSO are535

the FWDI method, the DBM strategy, and mutation operations. Thus, we can conclude that these added

mechanisms are effective for improving the search performance of ISBPSO. Moreover, the effects of different

fitness functions can be found comparing between CSO(C) and CSO(A), since the only difference between

the two methods is that different fitness functions are used. The two CSO algorithms generally obtain similar

accuracies on the datasets, while CSO(C) tends to select fewer features than CSO(A) on the datasets. This540

finding indicates that using the combined fitness function in Eq. (10) (adopted by CSO(C)) can obtain a

better feature reduction performance than adopting accuracy as the fitness function (adopted by CSO(A)).

Although ISBPSO obtains better FS results in most cases, ISBPSO performs worse than the compared

methods in some cases. On Sonar and Musk1, ISBPSO obtains significantly lower accuracies than most

of the benchmark PSO-based FS methods. Two possible reasons can explain this result. First, ISBPSO545

adopts the feature weighting results of MI to initialize particles. However, MI only measures the correlation

level between a feature and the class label, which neglects the correlation among the features. Thus, the

weighting results of MI for features are not accurate, which leads to the poor performance of the initialized

swarm of ISBPSO. Second, in this paper, we use the DBM strategy to reduce the search space of ISBPSO.

This strategy may incorrectly mask some key bits (features) during the evolutionary process of ISBPSO,550
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and then yields worse final FS results.

6.2. Comparisons with SFS and SBS

Table 3 shows the FS results of ISBPSO, SFS, and SBS. The results of SBS on the four highest dimen-

sional datasets, i.e., Isolet5, Mfeat, InterAd, and DrivFace, are not available (NA), since the experiments

on these datasets do not finish within four days. The reason is that the high dimensionality of data signif-555

icantly increases the computation time of SBS. On the one hand, the number of search attempts by SBS

is significantly increased with the increase of features. On the other hand, the computation time of each

feature subset evaluation of SBS significantly increases since it starts from a full set of features.

Table 3: Comparisons of feature selection results between ISBPSO and SFS/SBS.

Dataset Method #Features (std.) Sf BestA MeanA (Std.) Sa Dataset Method #Features (std.) Sf BestA MeanA (Std.) Sa

Sonar
ISBPSO 11.0 (2.6) 85.71 80.32 (2.59)

LSVT
ISBPSO 17.3 (7.3) 94.87 87.76 (3.41)

SFS 7.0 − 79.36 79.36 = SFS 4.0 − 76.92 76.92 +
SBS 42.0 + 80.95 80.95 = SBS 55.0 + 84.61 84.61 +

Movement
ISBPSO 18.1 (2.7) 79.63 73.38 (2.57)

Madelon
ISBPSO 7.2 (1.3) 90.51 86.61 (2.29)

SFS 15.0 − 74.07 74.07 − SFS 12.0 + 90.90 90.90 −
SBS 77.0 + 68.52 68.52 + SBS 487.0 + 59.36 59.36 +

Hillvalley
ISBPSO 14.3 (3.0) 55.07 50.73 (2.06)

Isolet5
ISBPSO 130.6 (21.0) 90.17 88.43 (1.02)

SFS 5.0 − 51.23 51.23 − SFS 35.0 − 85.68 85.68 +
SBS 94.0 + 49.86 49.86 + SBS NA NA NA NA NA

Urban
ISBPSO 17.7 (3.4) 86.77 83.74 (1.62)

Mfeat
ISBPSO 30.4 (4.5) 99.33 98.19 (0.42)

SFS 9.0 − 80.88 80.88 + SFS 11.0 − 97.67 97.67 +
SBS 113.0 + 78.92 78.92 + SBS NA NA NA NA NA

Musk1
ISBPSO 37.4 (6.2) 91.67 85.92 (2.96)

InterAd
ISBPSO 47.4 (18.9) 98.27 97.35 (0.56)

SFS 10.0 − 79.86 79.86 + SFS 14.0 − 96.65 96.65 +
SBS 122.0 + 80.56 80.56 + SBS NA NA NA NA NA

Arrhythmia
ISBPSO 14.8 (4.4) 73.72 71.13 (1.89)

DrivFace
ISBPSO 309.0 (44.2) 98.91 97.08 (0.80)

SFS 19.0 + 70.80 70.80 + SFS 9.0 − 93.99 93.99 +
SBS 110.0 + 61.31 61.31 + SBS NA NA NA NA NA

Compared with SFS, ISBPSO obtains higher accuracies with more features in most cases. Specifically,

ISBPSO obtains significantly higher accuracies on 8 of the 12 datasets. According to the number of selected560

features, SFS selects fewer features than ISBPSO on all the datasets. These results indicate that SFS does

not select some possible key features, which makes SFS obtain lower accuracies than ISBPSO in most cases.

A possible reason is that the greedy search strategy of SFS traps it into local optima, which limits the

method to further select more informative features. To sum up, as accuracy is often the main consideration

for a classification task, ISBPSO performs better than SFS from this perspective.565

Compared with SBS, ISBPSO obtains both significantly better accuracy and feature subset size results

on 7 of the 8 available datasets. On one dataset (Sonar), ISBPSO obtains a similar accuracy rate with

fewer features than SBS. These results indicate that ISBPSO is more effective than SBS for FS. In terms

of the number of selected features, it is obvious that ISBPSO generally selects substantially fewer features

than SBS. SBS shows poor feature reduction performance because it eliminates uninformative features in a570

backward way and the greedy search strategy used could easily trap it into local optima.
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6.3. Computation time

Table 4 shows the computation time (in minutes) of the FS methods per experimental run on each

dataset, where the average computation time over the 40 runs is shown for each PSO-based FS method.

According to the table, ISBPSO is not as time-efficient as SFS and SBS on datasets with a relatively smaller575

number of features. Specifically, ISBPSO cost more computation time than SFS on 6 datasets (from Sonar

to LSVT except for Arrhythmia), and cost more computation time than SBS on 3 datasets (from Sonar to

Hillvalley). The gaps of computation time between ISBPSO and these two methods decrease dramatically

with the increase of data dimensionality. On some high dimensional datasets (Madelon to InterAd), ISBPSO

performs even more time-efficient than SFS. One possible reason for the above result is that the number of580

search attempts of SFS (or SBS) increases dramatically with the increase of data dimensionality, whereas

the number of generations of ISBPSO does not change.

Table 4: Comparisons of computation time (m).

Dataset ISBPSO SBPSO UBPSO QBPSO CSO(C) CSO(A) CPSO SFS SBS
Sonar 0.37 0.66 0.75 0.68 0.50 0.59 0.55 0.04 0.33
Movement 1.24 1.85 2.02 1.83 1.39 1.70 1.71 0.32 0.97
Hillvalley 3.65 4.78 4.99 4.34 4.85 5.44 4.21 0.45 2.30
Urban 3.02 7.27 9.01 7.74 6.42 7.68 6.78 0.74 20.98
Musk1 3.60 5.76 6.59 6.24 5.19 6.07 4.93 0.55 19.50
Arrhythmia 1.81 6.99 8.08 7.74 6.13 6.89 3.36 1.98 138.34
LSVT 0.34 1.10 1.20 1.18 0.93 0.97 0.71 0.07 18.40
Madelon 24.00 567.08 444.80 419.12 517.67 609.10 463.77 37.76 2803.17
Isolet5 67.13 161.98 170.92 151.56 175.93 187.63 236.45 105.20 NA
Mfeat 33.84 314.10 279.45 248.63 252.37 451.82 467.20 34.17 NA
InterAd 92.51 1376.00 1408.22 1278.32 1033.45 1496.10 1189.82 134.89 NA
DrivFace 34.69 317.82 253.92 283.07 308.20 329.68 124.79 31.59 NA

Compared with the PSO algorithms, ISBPSO takes less computation time in all cases. The gaps of

computation time between ISBPSO and the PSO algorithms expand dramatically with the increase of data

dimensionality. For the 7 high dimensional datasets with more than 200 features (Arrhythmia to DrivFace),585

ISBPSO requires substantially less computation time than the benchmark PSO algorithms. Specifically,

ISBPSO saves around 46%, 52%, 94%, 56%, 86%, 91%, and 72% computation time than the second efficient

PSO algorithm on these datasets.

The above results show that the proposed ISBPSO algorithm is more time-efficient than benchmark PSO

algorithms. The following reason can explain why ISBPSO is a more efficient PSO algorithm for FS. All the590

methods compared in the experiments are based on the wrapper framework. Evaluating the fitness values is

time-consuming in a wrapper-based FS method as a learning algorithm is involved in each evaluation, and

the evaluation time of a feature subset (solution) is highly related to the size of the feature subset. ISBPSO

shows good performance to reduce features during the evolutionary process. So, the feature subsets to be

evaluated during the evolutionary process of ISBPSO are generally smaller than those of the benchmark595

PSO algorithms. This substantially reduces the computation time of ISBPSO for fitness evaluations.
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To illustrate the feature reduction performance of ISBPSO, we draw the feature number curves of the

PSO algorithms on each dataset in Fig. 8. Specifically, the average number of selected features of all the

particles at each generation is used to draw the curve for each PSO algorithm. Since 40 runs of experiments

are conducted for each algorithm, the average curve over the 40 runs is shown in Fig. 8. Note that the600

maximum number of generations of the two CSO algorithms is twice that of other PSO algorithms since they

only evolve a half of the particles at a generation. Thus, we convert the curves of the two CSO algorithms

from generations 0, 1, ..., 200 to generations 0, 1(2), ..., 100(200) for a fair comparison, i.e., choosing every two

generations from generations 0 to 200 to plot the curves to reduce the number of points from 200 to 100.

As a result, the actual number of generations for CSO(C) and CSO(A) is twice the number shown in x-axes605

of Fig. 8. According to the figure, the number of selected features by the swarm of ISBSPO during the

evolutionary process is substantially smaller than that of the benchmark PSO algorithms. The main reason

for this pattern is that the proposed ISBPSO algorithm uses the FWDI method for initialization instead of

the RI strategy used by benchmark PSO algorithms. The FWDI method adopts the feature weighting results

of MI to initialize the swarm, where the bits (features) with low weights would have low probabilities to be610

initialized as 1. So, the average number of selected features by the initial swarm of ISBPSO is substantially

reduced. Moreover, we discover a trend that the feature number curves of ISBPSO quickly increase in the

early phase of iterations and then converge to a stable level during the evolutionary process. This is because

that the MI measure used by FWDI can not accurately weigh all the features, since the correlation among

multiple features can not be captured by MI. Some complementary features can be improperly assigned615

to low weight values, which lowers the probabilities of these bits to be initialized as 1. During the early

evolutionary process of ISBPSO, the possible key features (bits) would be gradually selected by particles,

which yields an increasing trend in the feature number curve of ISBPSO. After that, the average number

of selected features by the swarm gradually convergences to a proper number determined by the ISBPSO

during the evolutionary process. To sum up, as shown in Fig. 8, the feature subsets to be evaluated during620

the evolutionary process of ISBPSO are much smaller than the benchmark PSO algorithms due to a better

feature reduction performance. Therefore, less computation time is generally needed by ISBPSO.

7. Further analysis

Comparisons in Section 6 have shown that the proposed ISBPSO algorithm is effective and efficient for

FS. In Section 7.1, we will further analyze the performance of the three new mechanisms (the FWDI method,625

DBM strategy, and genetic operations) adopted in ISBPSO in more detail. To test the effectiveness of each

mechanism, we propose three ISBPSO variants named ISBPSO-IN, ISBPSO-DBM, and ISBPSO-GO. In

each variant, one of the proposed mechanisms is eliminated. More specifically, ISBPSO-IN adopts the RI

method instead of the FWDI method, ISBPSO-DBM does not use the DBM strategy, and ISBPSO-GO
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Figure 8: Feature number curves of the PSO algorithms on the datasets. The x-axis denotes the number of generations and y-
axis denotes the average number of selected features by the swarm over the 40 runs.

does not conduct the genetic operations. Moreover, the convergence property of ISBPSO will be studied in630

Section 7.2.
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7.1. Performance of new mechanisms in ISBPSO

Table 5 shows the comparison results between ISBPSO and its variants. In the table, the averages

and standard deviations of fitness values (%) over the 40 runs are listed in column “MeanF (Std.)”. The

statistical significance test results from Mann-Whitney U-test are listed in column “Sfit”, where “+”, “−”,635

or “=” denotes that ISBPSO(α) obtains significantly higher, lower, or similar fitness values compared with

the variants. The computation time of each algorithm is listed in the “Time (m)” column.

Table 5: Comparisons between ISBPSO and its variants.

Dataset Method MeanF (Std.) Sfit #Features (Std.) Sf BestA MeanA (Std.) Sa Time (m)

Sonar

ISBPSO 88.10 (1.29) 11.0 (2.6) 85.71 80.32 (2.59) 0.37
ISBPSO-IN 87.80 (1.83) = 20.1 (4.5) + 88.89 82.18 (3.22) − 0.58
ISBPSO-DBM 88.05 (1.34) = 11.2 (2.9) = 85.71 80.48 (2.34) = 0.45
ISBPSO-GO 88.62 (1.20) − 11.7 (2.5) = 88.89 80.91 (2.97) = 0.44

Movement

ISBPSO 74.70 (0.77) 18.1 (2.7) 79.63 73.38 (2.57) 1.24
ISBPSO-IN 72.53 (1.36) + 25.0 (5.2) + 76.85 70.67 (2.82) + 1.56
ISBPSO-DBM 73.61 (0.75) + 19.9 (3.6) + 78.70 72.64 (2.31) = 1.39
ISBPSO-GO 74.21 (0.83) + 19.3 (2.7) = 78.70 72.85 (2.57) = 1.40

Hillvalley

ISBPSO 62.43 (0.56) 14.3 (3.0) 55.07 50.73 (2.06) 3.65
ISBPSO-IN 62.15 (0.73) = 19.8 (4.2) + 54.52 50.80 (1.51) = 3.82
ISBPSO-DBM 61.32 (0.57) + 17.4 (3.0) + 53.97 50.20 (1.66) = 4.37
ISBPSO-GO 62.26 (0.64) = 15.8 (2.5) + 53.97 50.72 (1.62) = 4.12

Urban

ISBPSO 89.50 (0.55) 17.7 (3.4) 86.77 83.74 (1.62) 3.02
ISBPSO-IN 86.69 (1.37) + 33.9 (7.5) + 85.78 82.07 (1.56) + 6.18
ISBPSO-DBM 88.16 (0.50) + 21.2 (3.8) + 87.26 82.98 (1.94) + 3.97
ISBPSO-GO 89.07 (0.58) + 21.3 (4.2) + 86.77 83.54 (1.94) = 3.75

Musk1

ISBPSO 91.38 (0.62) 37.4 (6.2) 91.67 85.92 (2.96) 3.60
ISBPSO-IN 89.84 (1.05) + 53.9 (6.9) + 93.06 88.00 (2.33) − 5.14
ISBPSO-DBM 89.75 (0.58) + 38.5 (6.7) = 91.67 86.28 (2.73) = 3.66
ISBPSO-GO 90.17 (0.58) + 44.4 (4.7) + 92.36 86.48 (3.07) = 4.11

Arrhythmia

ISBPSO 76.86 (0.98) 14.8 (4.4) 73.72 71.13 (1.89) 1.81
ISBPSO-IN 69.55 (1.56) + 78.1 (11.4) + 69.34 65.22 (1.84) + 6.34
ISBPSO-DBM 75.76 (0.81) + 16.7 (4.2) + 72.99 70.35 (1.85) + 2.27
ISBPSO-GO 76.45 (1.03) = 31.6 (6.5) + 74.45 70.46 (1.68) + 2.84

LSVT

ISBPSO 93.55 (0.83) 17.3 (7.3) 94.87 87.76 (3.41) 0.34
ISBPSO-IN 86.45 (1.19) + 108.3 (10.7) + 92.31 85.51 (3.61) + 0.95
ISBPSO-DBM 92.00 (1.03) + 35.0 (6.5) + 94.87 88.97 (3.77) = 0.46
ISBPSO-GO 92.22 (1.14) + 46.5 (8.9) + 97.44 90.00 (3.97) − 0.48

Madelon

ISBPSO 86.97 (2.24) 7.2 (1.3) 90.51 86.61 (2.29) 24.00
ISBPSO-IN 68.69 (0.97) + 176.4 (16.5) + 66.80 63.96 (1.49) + 393.20
ISBPSO-DBM 88.06 (1.87) − 8.3 (1.1) + 91.03 88.07 (2.04) − 61.46
ISBPSO-GO 87.26 (2.48) = 7.9 (1.3) + 91.41 86.82 (2.29) = 27.94

Isolet5

ISBPSO 88.57 (0.54) 130.6 (21.0) 90.17 88.43 (1.02) 67.13
ISBPSO-IN 85.91 (0.65) + 209.9 (16.2) + 88.67 86.98 (0.90) + 135.09
ISBPSO-DBM 87.16 (0.55) + 139.1 (22.8) = 89.74 87.71 (0.91) + 74.24
ISBPSO-GO 86.21 (0.51) + 174.1 (18.2) + 89.53 87.44 (1.10) + 80.86

Mfeat

ISBPSO 98.70 (0.16) 30.4 (4.5) 99.33 98.19 (0.42) 33.84
ISBPSO-IN 95.91 (0.27) + 175.0 (17.2) + 98.33 97.77 (0.38) + 235.22
ISBPSO-DBM 98.28 (0.17) + 31.3 (4.3) = 99.00 98.01 (0.50) = 63.53
ISBPSO-GO 98.23 (0.18) + 49.0 (8.5) + 98.83 98.22 (0.32) = 47.89

InterAd

ISBPSO 97.22 (0.18) 47.4 (18.9) 98.27 97.35 (0.56) 92.51
ISBPSO-IN 94.37 (0.37) + 509.2 (53.9) + 97.87 97.24 (0.38) = 1158.52
ISBPSO-DBM 96.95 (0.13) + 54.5 (12.4) = 98.17 97.19 (0.49) = 176.38
ISBPSO-GO 96.60 (0.14) + 109.8 (29.1) + 98.07 97.12 (0.45) = 176.00

DrivFace

ISBPSO 97.47 (0.19) 309.0 (44.2) 98.91 97.08 (0.80) 34.69
ISBPSO-IN 93.15 (0.37) + 2337.2 (203.8) + 96.72 95.40 (0.54) + 227.55
ISBPSO-DBM 96.97 (0.13) + 358.4 (26.6) + 98.36 97.24 (0.65) = 57.21
ISBPSO-GO 96.73 (0.13) + 488.6 (65.3) + 98.36 97.02 (0.72) = 49.73

In terms of the fitness value, the numbers of win/draw/loss times of ISBPSO in comparison with ISBPSO-

IN, ISBPSO-DBM, and ISBPSO-GO are 10/2/0, 10/1/1, and 8/3/1, which means that ISBPSO obtains

similar or better fitness values than the variants in almost all cases, i.e., 34 out of the 36 comparisons. To640

sum up, ISBPSO can generally obtain better fitness values than its variants. Thus, we can conclude that
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the new mechanisms proposed for ISBPSO are effective for improving the search performance.

In terms of the feature subset size, ISBPSO obtains significantly better results in almost all cases.

Specifically, ISBPSO selects significantly fewer features than ISBPSO-IN/ISBPSO-DBM/ISBPSO-GO on

12/7/10 of the 12 datasets and selects a similar number of features in other cases. This denotes that the645

feature reduction performance of ISBPSO is improved by adopting each of the three new mechanisms.

In terms of accuracy, ISBPSO obtains significantly higher or similar accuracies in most cases compared

with the three variants. ISBPSO obtains significantly worse accuracies in 4 cases. Specifically, it obtains

lower accuracies than ISBPSO-IN on Sonar and Musk1, obtains a lower accuracy rate than ISBPSO-DBM on

Madelon, and obtains a lower accuracy rate than ISBPSO-GO on LSVT. A possible reason is that ISBPSO650

may incorrectly reduce some critical features seeing that ISBPSO selects fewer features than the variants on

Sonar, Musk1, Madelon, and LSVT. Considering accuracy as the priority measure and feature subset size

as the second priority measure, the numbers of win/draw/loss times comparing ISBPSO with ISBPSO-IN,

ISBPSO-DBM, and ISBPSO-GO are 10/0/2, 7/4/1, and 9/2/1. This shows that ISBPSO obtains better

overall FS results than the variants in most cases.655

According to the computation time results of ISBPSO and the variants shown in Table 5, ISBPSO

generally requires less computation time than the three variants. The computation time of ISBPSO-DBM

and ISBPSO-GO is only slightly more than ISBPSO, while the computation time of ISBPSO-IN is much

more than ISBPSO. As we have discussed in Section 6.3, the computation time of these PSO-based wrapper

methods is highly related to the feature reduction performance. Moreover, as shown in Table 5, the final660

number of selected features of ISBPSO-IN on each dataset is much larger than that of ISBPSO, ISBPSO-

DBM, and ISBPSO-GO. Therefore, we can conclude that by using the FWDI method for initialization, the

feature reduction performance of ISBPSO is significantly improved.

The above comparisons between ISBPSO and its variants show that each of the three new mechanisms

used in ISBPSO is effective for improving its search performance, which in turn results in better FS results.665

7.2. Convergence analysis

Fig. 9 shows the convergence curves of ISBPSO and benchmark PSO algorithms. Each curve is drawn

from the average of the 40 best fitness values obtained at each generation over the 40 runs. The convergence

curves of SBPSO, UBPSO, QBPSO, and CSO(C) are drawn to compare with those of ISBPSO because these

PSO algorithms adopt the same fitness function as ISBPSO. Noted that, similar to Fig. 8, the convergence670

curves of CSO(C) are transformed from generations 0, 1, ..., 200 to generations 0, 1, ..., 100, since CSO(C)

evolves a half of particles compared with other PSO algorithms. Moreover, we show the convergence curves

of ISBPSO-IN in Fig. 9. Therefore, the effect of the FWDI method can be discovered by comparing ISBPSO

with ISBPSO-IN, and effects of the DBM strategy and the genetic operations can be found by comparing

ISBPSO-IN with SBPSO. The convergence curves of ISBPSO-DBM and ISBPSO-GO are between the curves675
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Figure 9: Convergence curves of the PSO algorithms on each dataset. The x-axis denotes the number of generations and y-
axis denotes the average fitness value over the 40 runs.

of ISBPSO and ISBPSO-IN. We do not show the curves of these two ISBPSO variants to avoid the figures

being too full to be seen clearly.
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According to Fig. 9, ISBPSO obtains significantly higher convergence curves than the benchmark algo-

rithms on all the datasets, showing that ISBPSO has a good convergence property. The effect of FWDI can

be clearly found in the figure. On most datasets, the fitness values obtained by ISBPSO at generation 0680

are higher than those of other PSO algorithms. This means that the initialized swarm of ISBPSO obtains

the best gbest in most cases. In a few cases (on Movement and Isolet5), the fitness values at generation

0 of ISBPSO are similar or slightly lower than the benchmark algorithms. However, the fitness values of

ISBPSO increase quickly during the following iterations after the initialization. This denotes that ISBPSO

obtains a higher quality initial swarm than benchmark PSO algorithms, which results in good convergence685

performance of ISBPSO.

ISBPSO-IN adopts the random strategy instead of the proposed FWDI method for initialization. We

further compare ISBPSO-IN with the benchmark PSO algorithms to test if the proposed ISBPSO algorithm

still performs effectively using the same initialization method as other PSO algorithms. So, the performance

of the DBM strategy and genetic operations can be evaluated. According to Fig. 9, ISBPSO-IN obtains690

higher convergence curves than the benchmark PSO algorithms in most cases. Only on Sonar, LSVT, and

Madelon, ISBPSO-IN obtains similar convergence curves to the best curve of SBPSO, UBPSO, QBPSO, and

CSO(C). These results denote that ISBPSO-IN shows a good convergence performance. Except for ISBPSO-

IN, CSO(C) generally obtains higher convergence curves than other PSO algorithms in most cases. This is

because that most of the tested datasets are high dimensional data (9 of the 12 datasets have more than695

100 features), and the optimization mechanism of CSO(C) is suitable for solving large-scale optimization

problems. According to the convergence cures, UBPSO performs worst on all the datasets. This is because

that UBPSO evolves slowly in the early phase of the evolutionary process by setting a small initial inertia

weight, which has an impact on the final search results. Comparing between ISBPSO-IN and SBPSO,

these two methods have similar convergence curves in the early phase of the evolutionary process. However,700

ISBPSO-IN finds better final solutions than SBPSO. This clearly shows that the DBM strategy and the

genetic operations are effective for improving the search performance of ISBPSO. The effect of the DBM

strategy is also discovered in the convergence cures obtained by ISBPSO-IN. For example, on InterAd, at

the generations of 25, 50, and 75 (which are the generations to update the mask to reduce the search space),

an obvious increasing trend of the convergence curve is shown.705

7.3. Discussion

Comparisons between ISBPSO and its three variants (ISBPSO-IN, ISBPSO-DBM, and ISBPSO-GO)

have clearly shown that the FWDI method, DBM strategy, and genetic operations adopted by ISBPSO are

all effective for improving the search performance. Moreover, the convergence curves of the PSO algorithms

denote that ISBPSO can quickly converge to a high fitness value and thus have a good convergence property.710

These results show that ISBPSO has very competitive search performance, which yields good FS results as
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shown in Section 6. The following reasons can explain the effectiveness of ISBPSO.

First, the convergence curves in Fig. 9 have shown that the FWDI method can lead to a better starting

point for the evolutionary process. This is because that the MI measure used by FWDI can catch the

correlation level between each feature and the class label. For a feature, the correlation level reflects its715

potential predictive power for the class label. The features with higher MI values are given more chances to

be selected by particles. Thus, particles with potentially better quality are generated, which improves the

quality of the initial swarm and the evolutionary speed of ISBPSO.

Second, comparisons between ISBPSO and ISBPSO-DBM in Section 7.1 have shown that the DBM

strategy is effective for improving the search performance of ISBPSO. The DBM strategy gradually masks720

some bits in the particles to stop them from further updating. Thus, ISBPSO only needs to search in a

smaller space, and the required computational resources of ISBPSO are reduced. From another perspective,

masking the bits means confirming partial FS results during the evolutionary process rather than confirming

the final FS results at the end of the iterations. Once a bit is masked, the optimizer does not pay any more

effort to evolve it, which simplifies the FS problem to be solved. Another reason for the effectiveness of725

DBM is that the mask generating strategy is effective. The mask is generated and updated by extracting

information from the particles in the swarm. When updating the mask, features that are not selected by all

the particles’ pbests are masked. This makes sense and has shown to be effective because it is very possible

that a feature is uninformative if it is not selected by most of the pbests in the swarm. By masking some

features, the optimizer can concentrate on evolving in the space formed of the remaining features that have730

not been decided to be selected or not.

Third, as shown in Section 7.1, the genetic operations are effective for improving the search performance.

In conventional PSO algorithms, a particle mainly learns from its pbest and gbest to update its position,

which can result in a quick decrease of the swarm diversity. In comparison, for ISBPSO, the crossover

operations form an effective way for exchanging the information within the particles, and the mutation735

operation gives more randomness to generate new solutions. Therefore, the swarm diversity is improved,

which leads to better search performance.

Although the experimental results in Section 6 have shown that ISBPSO obtains better FS results in

most cases compared to the benchmark methods, ISBPSO shows worse FS results in a few cases. ISBPSO

obtains significantly worse accuracies than most of the benchmark PSO algorithms on two relatively lower-740

dimensional datasets, Sonar and Musk1. In terms of the number of selected features, ISBPSO selects fewer

features than these benchmark PSO algorithms. This shows that ISBPSO might remove some informative

features, which leads to lower accuracies. Two possible reasons can lead to this result. First, MI used by

FWDI of ISBPSO only considers the correlation between a feature and the class label, while it neglects

the correlations among multiple features. This may yield inaccurate feature weighting information for745

initialization. Thus, the initialized swarm by FWDI may guide the ISBPSO to local optima and eliminate
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some informative features. Second, ISBPSO adopts the DBM strategy that gradually reduces the search

space during the evolutionary process. Even though we adopt a conservative scheme that only masks the

bits (features) that are not selected by all the particles’ pbests in the swarm. There is a possibility that

some key features are masked (eliminated) before being selected. As some key features are eliminated by750

DBM, the final FS results of ISBPSO are affected.

To sum up, the FWDI method and the DBM strategy are designed to accelerate the evolutionary pro-

cess of ISBPSO, while these two mechanisms may incorrectly eliminate some informative features during the

evolutionary process. For high dimensional data (with hundreds or thousands features) that require enor-

mous computational resources, ISBPSO can generally obtain better FS results than existing PSO algorithms755

since the evolutionary speed of ISBPSO is much improved using the new mechanisms. However, for low

dimensional data (several or tens) that require moderate computational resources, existing PSO algorithms

can be a better choice since these algorithms have enough computational resources to find a better solution

(feature subset) than ISBPSO, while the aggressive feature reduction strategies (i.e., FWDI and DBM) of

ISBPSO may incorrectly eliminate some informative features.760

8. Conclusions

In this paper, an improved binary PSO algorithm named ISBPSO is proposed for FS in classification.

To improve the FS performance, ISBPSO adopts three mechanisms, i.e., the FWDI method, the DBM

strategy, and the genetic operations, based on standard SBPSO. FWDI is an initialization method that

adopts the feature weighting results of MI for improving the quality of the initial swarm. The DBM765

strategy dynamically reduces the search space of the optimizer during the evolutionary process. The genetic

operations are conducted in ISBPSO as a refinement procedure in addition to the main PSO-based solution

updating mechanism to update the gbest of particles to improve the global search performance. The proposed

ISBPSO algorithm is then used to build a wrapper-based FS method.

The experimental results on 12 UCI datasets show the effectiveness and efficiency of ISBPSO. ISBPSO770

outperforms the benchmark PSO-based FS methods by obtaining better or similar accuracies with fewer

features in most cases. ISBPSO outperforms two conventional FS methods, SFS and SBS, by obtaining

higher accuracies in most cases. ISBPSO significantly reduces the computation time compared with bench-

mark PSO-based FS methods, since it has better feature reducing performance than these PSO algorithms.

Moreover, the further analysis shows that all the three mechanisms proposed in ISBPSO are effective for775

improving the search performance, and ISBPSO shows a good converge property.

Although the proposed ISBPSO algorithm significantly reduces the computation time on big data with

hundreds or thousands of features and instances compared with the benchmark PSO algorithms, it still

takes much computation time. This is because the wrapper framework adopted by ISBPSO requires a large
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amount of time for fitness function evaluations. Therefore, our next work will focus on embedding data scale780

reduction strategies (e.g., instance selection) in PSO-based FS methods to improve time efficiency.
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