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Abstract

This paper proposes a robust method for multi-response optimization (MRO) considering the location effect,

dispersion effect, and model uncertainty simultaneously. We propose a multi-objective optimization model

for MRO that simultaneously maximizes the satisfaction degrees of the local and dispersion effects. Specif-

ically, a robust desirability function is used to model the overall satisfaction degree of multiple responses

with respect to the two effects. This desirability function evaluates a solution’s performance considering the

confidence intervals predicted by the regression models of location and dispersion effects, and thus, can ad-

dress the problem of model uncertainty. The proposed multi-objective model yields a set of non-dominated

solutions that approximate the Pareto front instead of one single solution, which provides more flexibility for

decision makers to select the final best compromise solution based on their preferences. To solve the model,

a hybrid multi-objective optimization algorithm called NSGAII-DMS that combines non-dominated sorting

genetic algorithm II (NSGA-II) with direct multi-search (DMS) is proposed. NSGAII-DMS uses the search

mechanism of NSGA-II during the early evolutionary phase to quickly find a set of non-dominated solutions

and then uses the search mechanism of DMS to further tune the found non-dominated solutions. Two

test examples have shown that the proposed multi-objective MRO model can produce a set of robust solu-

tions by considering the location effect, dispersion effect, and model uncertainty. Further analyses illustrate

that NSGAII-DMS shows significantly better search performance than several well-known multi-objective

optimization algorithms, which include NSGA-II, SPEA2, MOEA/D, and DMS.
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1. Introduction

Response surface methodology (RSM) is widely used for product quality and manufacturing process

improvements (Box et al., 1987; Myers et al., 2016; Montgomery, 2017). It contains a set of statistical and

optimization tools with respect to design of experiments (DOE), empirical model building, and optimization

(Myers, 1999). RSM was first used for single response optimization (SRO) problems, which aims to find

the optimal setting for input variables with respect to one single response variable (e.g., a quality variable).

However, many products/processes in modern industries include multiple responses. For example, in the

laser gyroscope manufacturing process of a company, the quality (response) variables include zero bias, bias

stability, bias repeatability, etc. Therefore, it is required to simultaneously optimize the multiple responses

by selecting the optimal setting for input variables. This optimization problem is called multi-response

optimization (MRO) (Myers et al., 2016).

Since directly optimizing multiple responses is generally intractable, many creative approaches have

been proposed to form MRO into a single objective optimization model. These approaches include the goal

programming approach (Kazemzadeh et al., 2008), generalized distance approach (Khuri & Conlon, 1981),

compromise programming approach (Costa et al., 2012a), probabilistic approach (Peterson et al., 2009), loss

function approach (Taguchi, 1986; Pignatiello, 1993), and desirability function approach (Derringer, 1994).

Except for the above studies, some studies (Lee et al., 2011; Chapman et al., 2014a,b; Costa & Lourenço,

2017; Ouyang et al., 2021) have applied multi-objective optimization algorithms for simultaneously optimiz-

ing multiple responses to find a set of non-dominated solutions instead of one single solution. However, one

drawback of these methods is that it will be hard to optimize the defined MRO model if there are a large

number of responses (more than three objectives).

To obtain a robust parameter setting for input variables in a response optimization problem, both

the location and dispersion effects should be considered. The location effect denotes a response’s bias

compared with the target while the dispersion effect denotes the variance (i.e., robustness) of a response.

The loss function approach (Taguchi, 1986; Pignatiello, 1993) can be applied to solve such a problem since

both the location and dispersion effects can be measured by a loss function. Moreover, the dual-response

methods (Vining & Myers, 1990; Kim & Lin, 1998; Zeybek et al., 2020) were proposed for robust response

optimization. These methods model the location and dispersion effects as two separate “responses” to be

optimized. Based on the idea of dual-response optimization, Kim & Lin (2006) proposed an MRO method

that simultaneously optimizes the location and dispersion effects of multiple responses. The desirability

function is adopted to obtain the degrees of satisfaction in terms of the means and standard deviations of

the responses. The optimization model is then defined as maximizing the minimum degree of satisfaction

over multiple responses.

The empirical response models established based on the experimental data depict the relations between
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the input variables and the responses. In fact, the response models cannot be perfectly fitted, which leads

to the problem of model uncertainty. Recently, some creative approaches have been proposed to handle

the model uncertainty problem in MRO to obtain a more reliable solution. For example, Ko et al. (2005),

Ouyang et al. (2017), and Feng et al. (2021) proposed several modified loss functions considering model

uncertainty for MRO. Peterson et al. (2009), Wang et al. (2016, 2020), Ouyang et al. (2020, 2022), and

Yang et al. (2021) proposed several Bayesian-based MRO methods. Since the Bayesian approach can obtain

the posterior probability that a response falls into the defined tolerance interval, the model uncertainty

problem is naturally handled. Another widely used strategy to address model uncertainty is considering

a response’s overall performance in the confidence interval instead of the mean response value predicted

by the model. Xu & Albin (2003) proposed a min-max deviation model that considers every point in

the confidence interval for a response to handle the uncertainty caused by model coefficients. Gülpınar &

Rustem (2007) proposed a worst-case strategy that uses the worst response value predicted by the uncertain

model for constructing the response optimization model. He et al. (2012) adopted the worst-case strategy

to form a robust desirability function to build an MRO method. This method inherits the advantages of the

traditional desirability function approach, whereas it neglects the dispersion effect. Based on the idea of the

robust desirability function, He et al. (2017) proposed a robust fuzzy programming method that considers

the location effect, dispersion effect, and model uncertainty. One limitation of this method is that it only

considers the uncertainty of the location effect. It is beneficial to consider the uncertainty of the dispersion

effect as well.

Most existing dual-response methods construct a single objective optimization model to optimize the

location and dispersion effects. To form the optimization model, decision makers’ (DMs’) preferences are

required to balance the priorities of the two effects, which is not an easy task because extensive domain

knowledge is required. Recently, several multi-objective methods (Köksoy & Doganaksoy, 2003; Köksoy &

Yalcinoz, 2008; Shin & Cho, 2009; Lee et al., 2009; Costa et al., 2012b) for robust response optimization were

proposed to find a set of non-dominated solutions (i.e., parameter settings) by simultaneously optimizing

the two effects. These methods do not proactively use the DMs’ preferences during the optimization. In

comparison, DMs can select the best compromise solution from the non-dominated solutions according to

their preferences or by using multi-objective decision methods after the optimization. However, these multi-

objective methods are limited since they can only handle the SRO problems. To address multiple responses,

Lee et al. (2018) proposed a multi-objective MRO method based on the desirability function. This method

separately models the overall degrees of satisfaction with respect to the location and dispersion effects of

multiple responses. The two effects are then optimized by a multi-objective optimization algorithm and the

posterior preference articulation approach is used to select the final solution. However, the drawback of this

method is that model uncertainty is not considered.

As mentioned above, to obtain a robust parameter setting for MRO, it is required to consider the
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location and dispersion effects of the responses, as well as model uncertainty. Moreover, a multi-objective

optimization algorithm can return a set of non-dominated solutions with different combinations of the degrees

of satisfaction with respect to the location and dispersion effects, which provides DMs with more flexibility

to further select a desirable solution considering their preferences. Therefore, proposing a multi-objective

optimization based MRO model that addresses both the location and dispersion effects while considering

model uncertainty is required. To solve the response optimization problems, evolutionary algorithms, such as

genetic algorithms (GAs) (Köksoy & Yalcinoz, 2008; Wang et al., 2016), are generally used due to their good

global search performance. Non-dominated sorting genetic algorithm II (NSGA-II) (Deb et al., 2002) is one

of the most popular multi-objective evolutionary algorithms (MOEAs) that can find a set of non-dominated

solutions approximating the true Pareto front by simultaneously optimizing multiple objective functions,

and thus can be used to solve the constructed MRO model. NSGA-II can search in a large solution space

with the population-based solution updating strategy, which endows it with a good global search ability.

However, being a type of GA, NSGA-II is weak in fine-tuning solutions when they are very close to optimal

solutions because the genetic operators in GAs introduce too much randomness (Oh et al., 2004). He et al.

(2012) proposed a hybrid algorithm combining a GA with a direct search (also known as pattern search)

algorithm to rectify the mentioned weakness of the GAs. The hybrid algorithm first adopts the GA to

optimize the established desirability function for MRO, and then uses the direct search algorithm for further

optimization. However, this hybrid algorithm is proposed for a single optimization model, and thus, it does

not apply to multi-objective MRO models. Therefore, it would be beneficial to propose an effective multi-

objective optimization algorithm that combines NSGA-II with a direct search algorithm for the MRO model.

To narrow the above stated research gaps, this paper proposes a novel multi-objective optimization based

MRO method, which includes a multi-objective MRO model and a multi-objective optimization algorithm.

The main contributions of this paper are summarized as follows:

• We construct the MRO problem as a multi-objective optimization model that maximizes the desirabil-

ity values of both the location and dispersion effects. To address model uncertainty, we adopt the idea

of robust desirability function (He et al., 2012) and construct two desirability functions that model

the overall location and dispersion effects of multiple responses, respectively.

• We propose a hybrid optimization algorithm called NSGAII-DMS that combines NSGA-II with direct

multi-search (DMS) (Custódio et al., 2011), a recently proposed multi-objective optimization algorithm

based on the direct search, to solve the constructed multi-objective MRO model. In the proposed

optimization algorithm, NSGA-II is used first to find a set of non-dominated solutions, and then,

DMS is used to further update the non-dominated solutions by searching in the local area around the

solutions found by NSGA-II.

• We show the effectiveness of the constructed MRO model with two test examples and verify the
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performance of NSGAII-DMS by comparing it with several well-known multi-objective optimization

algorithms.

• We propose to use the ideal point method (IPM) Li et al. (2016) to help DMs to select the best

compromise solution from the non-dominated solutions found by NSGAII-DMS. The results of the

test examples show that IPM is a desirable tool for decision making.

The remainder of this paper is organized as follows. Section 2 presents the preliminaries, which are basic

concepts for the proposed method. Section 3 describes the details of the proposed MRO model. Section

4 introduces the proposed NSGAII-DMS algorithm. Section 5 evaluates the performance of the proposed

MRO model with two test examples. Section 6 verifies the search performance of the proposed optimization

algorithm NSGAII-DMS. The conclusions and future research interests are given in Section 7.

2. Preliminaries

This section presents the basic concepts for the proposed method, including a brief introduction of the

multi-objective optimization problems (MOPs) and a brief introduction of the desirability function based

MRO methods.

2.1. Multi-objective optimization problems

An MOP aims to simultaneously minimize/maximize multiple objective functions. The mathematical

formula of an MOP with m objectives can be written as

minimize F(x) = [f1(x), f2(x), ..., fm(x)]T

subject to x ∈ X
, (1)

where x = [x1, x2, ..., xn]T ∈ Rn is a vector (solution) of n decision variables, fj(x) (j = 1, 2, ...,m) denotes

the j th objective function, and X denotes the set of all feasible solutions. In MOPs, a solution’s goodness

is determined by the trade-offs among the objectives. Given two solutions x1 and x2 for the problem in Eq.

(1), x1 is better than x2 if

∀j : fj(x1) ≤ fj(x2) and ∃j : fj(x1) < fj(x2). (2)

We say that x1 dominates x2 (denoted by x1 ≺ x2) if x1 is better than x2. If a solution x∗ is not dominated

by any feasible solution x ∈ X, x∗ is said to be a Pareto optimal solution. Generally, an MOP has a set

of Pareto optimal solutions. The surface formed by the Pareto optimal solutions in the objective space is

called the Pareto front. The objective of a multi-objective optimization algorithm is to find a set of well

distributed non-dominated solutions approximating the true Pareto front.
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Figure 1: Illustration of the procedure of NSGA-II at a generation.

2.2. NSGA-II

In recent years, many MOEAs have been proposed to solve MOPs. These algorithms can obtain a set

of non-dominated solutions approximating the true Pareto front. MOEAs have the advantages of being

derivative-free, good global search performance, easy implementation, etc. Thus, they can be easily applied

to various MOPs. NSGA-II is one of the most popular MOEAs proposed by Deb et al. (2002). We briefly

introduce the idea of NSGA-II as follows.

Fig. 1 illustrates the procedure of NSGA-II at a generation. Suppose that the population has N solutions.

At each generation, the offspring population with N solutions is produced by the genetic operators based

on the parent population. A sorting pool is generated by combining the parent and offspring populations.

The fast non-dominated sorting approach and crowding distance measure are used then to sort the solutions

in the sorting pool. The best N solutions in the sorted pool are added to the new population for the next

generation. Specifically, the fast non-dominated sorting approach can divide the solutions in the sorting pool

into several non-dominated fronts (5 in the example shown in Fig. 1) according to the Pareto dominance

concept, where a lower front level denotes a better fitness level of the solution. To compare the solutions

within the same non-dominated front, the crowding distance that measures the density of solutions around

a particular solution is used in NSGA-II. A solution with a larger crowding distance is said to have a better

fitness level. Using the fast non-dominated sorting approach and crowding distance measure simultaneously,

any two solutions in the sorting pool can be compared, which is beneficial for sorting the solutions with

respect to their goodness.
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2.3. Direct multi-search (DMS)

DMS is a recently proposed multi-objective optimization algorithm based on the idea of direct search

(Custódio et al., 2011). It mainly adopts a search mechanism named poll step to update solutions during

the optimization process. DMS has shown to have excellent convergence behaviors for continuous MOPs,

and thus, can be used for solving the established multi-objective MRO model in this paper.

The poll step of DMS at an iteration can be briefly introduced as follows. Let xp be a poll center selected

from the set (denoted by Lns) of non-dominated solutions found so far. Then, a set Ltrial of new solutions

is generated as

Ltrial = {xp + αxpd|d ∈ D} (3)

where D is a randomly generated positive spanning set at this iteration, d is a vector in D that decides a

search direction, αxp is a step size parameter of xp that decides the length of the search. The generated

solutions in Ltrial can be then used to update the non-dominated set Lns based on the Pareto dominance

concept. We say that the poll step succeeds if Ln is successfully updated, and otherwise, we say the poll step

fails. The step size parameter of the poll center is updated to αxp,new ≥ αxp if the poll step succeeds, and

is updated to αxp,new < αxp if the poll step fails. It indicates that DMS can gradually reduces the search

space when the poll step fails, which results in good local search performance and excellent convergence

behaviors. Each new generated solution xt ∈ Ltrial has a step size parameter αxt as well, which inherits the

value of αxp , i.e., αxt = αxp,new .

2.4. MRO methods using desirability functions

Let x = [x1, x2, ..., xn]T be a vector of n input variables and y be a response variable. An RSM method

generally uses a quadratic model to depict the relation between x and y as

y(x) = β0 +

n∑
i=1

βixi +

n∑
i=1

βiix
2
i +

∑
i<j

n∑
j=2

βijxixj + ε, (4)

where ε ∼ N(0, σ2) is the experimental error term. Let

z(x) = [1, x1, ..., xn, x
2
1, ..., x

2
n, x1x2, ..., xn−1xn]T (5)

and

β = [β0, β1, ..., βn, β11, ..., βnn, β12, ..., βn−1,n]T . (6)

The model in Eq.(4) can be depicted as

y(x) = z(x)
T
β + ε. (7)
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Suppose that g samples are obtained in the experiment, X is a g×n matrix denoting the observations of

x, and y is a g × 1 vector denoting the observations of the response y. Using the least squares estimation,

the vector of estimated parameters is obtained as β̂ = (XTX)−1XTy, and the estimated response value is

obtained as ŷ(x) = z(x)
T
β̂. Under the assumption that the experimental errors are independently identically

distributed, the standard error of the predicted response is obtained as

Se[ŷ(x)] =

√
σ̂2z(x)

T
(XTX)−1z(x). (8)

Then, the (1− α) confidence interval [yL(x), yU (x)] of the true response y(x) is obtained as

[yL(x), yU (x)] = [ŷ(x)− tα/2,g−p · Se[ŷ(x)], ŷ(x) + tα/2,g−p · Se[ŷ(x)]] (9)

where tα/2,g−p is the 1 − α/2 quantile of a Student’s t-distribution with g − p degrees of freedom, g is the

number of samples obtained in the experiment, and p is the number of estimated parameters.

In an MRO problem with m independent responses yj (j = 1, ...,m), we can use the aforementioned

model to obtain the estimated response value ŷj(x), standard error Se[ŷj(x)], and the confidence interval

[yLj (x), yUj (x)] for each response. The desirability function approach introduced by Derringer (1994) is a

very popular and powerful technique that can comprehensively evaluate the overall degree of satisfaction of

multiple responses. This approach first transforms each predicted ŷj(x) into a desirability value d(ŷj(x)) ∈

[0, 1] (larger is better), which reflects the degree of satisfaction of each response with respect to the target.

Then, the overall desirability value of all responses is calculated using the function

D(x) =
( m∏
j=1

d(ŷj(x))wj
)1/∑wj

(10)

where wj > 0 denotes the weight of response yj . Finally, the MRO problem is defined as an optimization

model that maximizes the overall desirability function D(x).

The drawback of Derringer’s method is that it neglects the fact that the predicted responses ŷj(x)

(j = 1, ...,m) are unreliable to some extent due to the uncertainty of the fitted regression models. In other

words, this method does not consider the problem of model uncertainty. Recently, He et al. (2012) proposed

a robust desirability function that considered model uncertainty in modeling the overall desirability degree

of multiple responses. Specifically, a response’s desirability level is measured by the worst desirability value

produced by the confidence interval [yLj (x), yUj (x)], and it is obtained as

drj(x) = min{d(yLj (x)), d(yUj (x))}. (11)

Then, a robust overall desirability value for multiple responses can be obtained based on Eq. (10) by
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replacing d(ŷj(x)) with drj(x).

3. Proposed multi-objective optimization model for MRO

This section proposes a multi-objective optimization model that considers the location effect, dispersion

effect, and model uncertainty simultaneously for MRO. Suppose that an MRO problem contains m indepen-

dent responses. Using the quadratic model described in Section 2.4, we can get the predicted mean (location

effect) ŷj,µ(x) (j = 1, ...,m) and the predicted standard deviation (dispersion effect) ŷj,σ(x) (j = 1, ...,m) of

each response. Moreover, the 1− α confidence intervals [yLj,µ(x), yUj,µ(x)] and [yLj,σ(x), yUj,σ(x)] for the mean

and standard deviation of each response can be obtained by Eq. (9). Based on these notations, we model

the overall location and dispersion effects of multiple responses based on the desirability function as follows.

3.1. Overall location effect considering model uncertainty

In this paper, we model the overall location effect of multiple responses with the desirability function

approach. Specifically, the robust desirability function (He et al., 2012) that can handle the uncertainty of

fitted models is used to model the overall location effect. The optimization objective for a response can

be the nominal-the-best (NTB), the larger-the-better (LTB), or the smaller-the-better (STB) type. The

desirability function for each of the three response types is shown as follows.

For an NTB type response yj , the robust desirability function is defined as

drj,µ(x) =


0; if yLj,µ(x) ≤ ymin

j,µ or yUj,µ(x) ≥ ymax
j,µ

min

{(
yLj,µ(x)− ymin

j,µ

Tj,µ − ymin
j,µ

)sj
,

(
ymax
j,µ − yUj,µ(x)

ymax
j,µ − Tj,µ

)tj}
; otherwise

(12)

where ymin
j,µ and ymax

j,µ denote the lower and upper specification limits of the response, respectively, Tj,µ

denotes the target value of the response, and sj and tj are the parameters determining the shape of the

desirability function (see Kim & Lin (1998) for more details). Specifically, sj = 1 and tj = 1 indicate a

linear shape of the desirability function.

For an LTB type response yj , the robust desirability function is defined as

drj,µ(x) =



0; if yLj,µ(x) ≤ ymin
j,µ(

yLj,µ(x)− ymin
j,µ

Tj,µ − ymin
j,µ

)tj
; if ymin

j,µ < yLj,µ(x) < Tj,µ

1; if yLj,µ(x) ≥ Tj,µ

(13)

where ymin
j,µ denotes the lower specification limit and Tj,µ denotes the target value of the response.
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For an STB type response yj , the robust desirability function is defined as

drj,µ(x) =



0; if yUj,µ(x) ≥ ymax
j,µ(

ymax
j,µ − yUj,µ(x)

ymax
j,µ − Tj,µ

)tj
; if Tj,µ < yUj,µ(x) < ymax

j,µ

1; if yUj,µ(x) ≤ Tj,µ

(14)

where ymax
j,µ denotes the upper specification limit and Tj,µ denotes the target value of response yj . Using

Eqs. (12)-(14), the robust desirability value drj,µ(x) for each response can be obtained. Then, we can model

the overall location effect of multiple responses with the robust overall desirability function

Dr
µ(x) =

( m∏
j=1

drj,µ(x)wj,µ
)1/∑wj,µ

, (15)

where wj,µ > 0 is the weight for the location effect of response yj .

3.2. Overall dispersion effect considering model uncertainty

The robust desirability function method proposed by He et al. (2012) does not consider the dispersion

effect of responses. In this paper, the dispersion effect of responses is considered as well. We model the

overall dispersion effect in a similar way to the overall location effect. The dispersion effect ŷj,σ(x) for a

response yj is always the STB type, and thus, it can be modeled considering model uncertainty as

drj,σ(x) =



0; if yUj,σ(x) ≥ ymax
j,σ(

ymax
j,σ − yUj,σ(x)

ymax
j,σ − Tj,σ

)tj,σ
; if Tj,σ < yUj,σ(x) < ymax

j,σ

1; if yUj,σ(x) ≤ Tj,σ

, (16)

where ymax
j,σ and Tj,σ denote the upper specification limit and the target value of the standard deviation

of response yj , and tj,σ defines the shape of the desirability function. Then, the overall location effect of

multiple responses can be modeled by the overall robust desirability function

Dr
σ(x) =

( m∏
j=1

dri,σ(x)wj,σ
)1/∑wj,σ

, (17)

where wj,σ > 0 is the weight for the dispersion effect of response yj .

3.3. The optimization model

In this paper, we optimize the location and dispersion effects of multiple responses simultaneously.

The overall location and dispersion effects of multiple responses can be modeled by the robust desirability
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functions in Eqs. (15) and (17), respectively. The desirability function values Dr
µ(x) and Dr

σ(x) for the

two effects are the larger the better. Therefore, we can formulate the optimization model as an MOP of

maximizing both Dr
µ(x) and Dr

σ(x). Seeing that the desirability function values Dr
µ(x) and Dr

σ(x) are in

[0, 1] according to their definitions, we can easily transform the optimization model to an MOP with the

objective functions to be minimized. According to the above analysis, we formulate the optimization model

as

mimimize F(x) = [1−Dr
µ(x), 1−Dr

σ(x)]T

subject to x ∈ X
, (18)

where x denotes the vector of the input (decision) variables, X denotes the design space of input variables,

and Dr
µ(x) and Dr

σ(x) are the overall robust desirability functions defined in Eqs. (15) and (17), respectively.

4. Proposed optimization algorithm: NSGAII-DMS

This section proposes a multi-objective optimization algorithm called NSGAII-DMS that combines the

search mechanisms of NSGA-II and DMS for solving the proposed MRO model. We first introduce the

overall procedure of NSGAII-DMS, and then, introduce the main components of NSGAII-DMS in detail.

4.1. Overall procedure of NSGAII-DMS

NSGA-II is a competitive multi-objective optimization algorithm with good global search performance,

while DMS performs well on the local search. To solve the established MRO model in Eq. (18), we propose a

hybrid optimization algorithm (i.e., NSGAII-DMS) combing the search mechanisms of NSGA-II and DMS.

The proposed optimization algorithm has two optimization phases. In the first phase, NSGA-II is adopted

to find a set of non-dominated solutions. In the second phase, the poll step in DMS is used to further

tune the non-dominated solutions found by NSGA-II. The first phase of NSGAII-DMS can be seen as an

exploration process and the second phase of NSGAII-DMS can be seen as an exploitation process. Thus,

NSGAII-DMS has the potential to obtain promising optimization results.

The procedure of NSGAII-DMS is shown in Algorithm 1. The NSGA-II process performs in the first

phase of NSGAII-DMS. First, the initial population Pt (t = 1) that contains N feasible solutions xtk,

k = 1, 2, ..., N is randomly generated. Then, at each iteration, the offspring population Ot is generated by

the genetic operators based on the parent population Pt and the sorting pool S is generated as the union

of Ot and Pt. After that, we sort the solutions in S using the fast non-dominated sorting approach and the

crowding distance measure (see Section 4.3), and then, add the best N solution to the population Pt+1 of

the next generation. Finally, after the iterations, the NSGA-II process finds a set Lns of non-dominated

solutions, which is input of the next phase, i.e., the DMS process.

The DMS process performs in the second phase of NSGAII-DMS. First, an initial step size parameter

α0 is assigned to each solution in the non-dominated set Lns. Then, at each iteration, a set Ltrial of new
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solutions is generated based on Eq. (3) described in Section 2.3. Next, the original non-dominated set Lns

is updated by the new solutions based on the Pareto dominance concept. It should be noted that we let the

maximum size of the non-dominated set Lns be N (equal to the population size). Thus, the problem that

the non-dominated set Lns gradually gets extremely large during the iterations can be avoided. Specifically,

if the number of solutions in Lns exceeds N , we eliminate the solutions with the largest crowding distance

value (shown in Eq. (19)) to make the size of Lns be N . Finally, when the number of the function evaluations

of the DMS process reaches the predefined maximum evaluation number E, the whole algorithm terminates.

Algorithm 1: Pseudocode of NSGAII-DMS.

Input : The maximum number of generations during the NSGA-II process T , the population size N , the
maximum number of the function evaluations during the DMS process E, and the initial value of
the step size parameter α0 ;

Output : The set of found non-dominated solutions Lns;

/* Begin the NSGA-II process. */

1 t← 1 ; /* Initialize the generation counter t */

2 Pt ← {xt1,xt2, ...,xtN} ; /* Initialize the population Pt. xtk (k = 1, ..., N) denotes a feasible

solution. */

3 Evaluate the two objective functions based on Eq. (18) for each xtk ∈ Pt;
4 Sort the solutions in Pt based on the fast non-dominated sorting approach and the crowding distance

measure (see Section 4.3);
5 while t < T do
6 Generate the offspring population Ot by applying genetic operators on Pt (see Section 4.4);
7 Evaluate the two objective functions based on Eq. (18) for each solution in Ot;
8 S← Ot ∪ Pt ; /* Generate the sorting poll S */

9 Pt+1 ← Sort the solutions in S using the fast non-dominated sorting approach and the crowding distance
measure and return the best N solutions (see Section 4.3);

10 t← t+ 1;

11 end
12 Lns ← The non-dominated solutions in Pt;

/* Begin the DMS process. */

13 e← 0; /* Initialize the function evaluation counter e of the DMS process. */

14 For each solution X ∈ Lns, assign the step size parameter value as αX = α0;
15 while e < E do
16 Select a poll center xp from Lns (see Section 4.5);
17 Randomly generate a postive spanning set D;
18 Ltrial ← {xp + αxpd|d ∈ D}; /* Generate a set Ltrial of new solutions based on the poll step.

*/

19 Evaluate the two objective functions of each solution in Ltrial based on Eq. (18);
20 Update the non-dominated set Lns with Ltrial;
21 Update the step size parameter value of the poll center xp from αxp to αxp,new (see Section 4.6);
22 For each solution x ∈ Lns, let αx = αxp if x = xp or x ∈ Ltrial;
23 e← e+ |D|; /* Update the function evaluation counter e. |D| denotes the number of

vectors in D. */

24 end
25 return The set of non-dominated solutions Lns;
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Algorithm 2: Pseudocode of the fast non-dominated sorting approach.

Input : The sorting poll S ;
Output : Non-dominated fronts F1,F2, ...,Fl ;

1 i← 0 ;
2 while S 6= ∅ do
3 i← i+ 1 ;
4 Fi ← Find the non-dominated solutions from S ;
5 S← S\Fi ;

6 end
7 l← i ;
8 return Non-dominated fronts F1,F2, ...,Fl ;

4.2. Solution encoding and initialization

In NSGAII-DMS, the real encoding strategy is used to represent solutions. In the RSM scenario, the

design space of the input variables is generally a cuboid region −1 ≤ xi ≤ 1 (i = 1, 2, ..., n). Therefore,

the input variables for the MRO problem can be represented as a vector x = [x1, x2, ..., xn]T where each

−1 ≤ xi ≤ 1, i = 1, 2, ..., n.

To initialize a feasible solution x = [x1, x2, ..., xn]T , we set the value of each xi (i = 1, 2, ..., n) as a

random value from the uniform distribution U(−1, 1). It is also worth noting that, during the iterations

of NSGAII-DMS, the new generated solutions may be out of the feasible solution space (i.e., xi < −1 or

xi > 1). To address this issue, we further use a repairing strategy that replaces the original value of xi with

-1 if xi < −1 and replaces the original value of xi with 1 if xi > 1.

4.3. Sorting solutions

In NSGAII-DMS, the fast non-dominated sorting approach and the crowding distance measure proposed

by Deb et al. (2002) is used to sort solutions with respect to their goodness.

The main procedure of the fast non-dominated sorting approach is shown in Algorithm 2. First, this

sorting approach selects the non-dominated solutions from the original sorting poll S and appends them

into the first non-dominated front F1. Then, the sorting poll S is updated by removing the solutions in F1.

Next, the second non-dominated front F2 is constructed in the same way as F1 and S is further updated

by removing the solutions in F2. This process continues until S is empty and we finally divide the original

solutions in S into l fronts F1,F2, ...,Fl. Given two solutions x1 ∈ Fa and x2 ∈ Fb, x1 is better than x2 if

a < b.

The crowding distance of a solution is calculated as the average side length of the cuboid composed by

its two nearest solutions in the same non-dominated front. Let x ∈ Fi be a solution in the non-dominated

front i (i ∈ {1, 2, ..., l}), and x+ ∈ Fi and x− ∈ Fi be its two nearest solutions in the same front. Then, the
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crowding distance value of x is calculated as

cd(x) =


∞; if ∃j ∈ {1, 2, ..,m} : fj(x) = fmax

j or fj(x) = fmin
j

m∑
j=1

|fj(x+)− fj(x−)|
fmax
j − fmin

j

; otherwise
(19)

where fmax
j = maxq∈Fi fj(q) and fmin

j = minq∈Fi fj(q). The crowding distance cd(x) indicates the density of

solutions in the local area around x. It can be used to compare any two solutions in the same non-dominated

front. A larger crowding distance value denotes a better fitness level of the solution.

In NSGAII-DMS, we can sort the solutions in the sorting poll S according to solutions’ goodness evaluated

by the aforementioned fast non-dominated sorting approach and the crowding distance measure, and then,

add the best N solutions to the population Pt+1 as shown in line 9 of Algorithm 1. It should be noted

that, in this paper, we use a dynamic crowding distance calculation strategy (Luo et al., 2008) to select the

best N solutions from S. In this dynamic strategy, we first obtain the non-dominated fronts with the fast

non-dominated sorting approach and obtain the crowding distance with Eq. (19) for each solution. Next,

the worst solution (the one that has the smallest crowding distance value in the last non-dominated front)

is eliminated. After the elimination, we use Eq. (19) again to update the crowding distance value for each

remaining solution. Then, the worst solution determined by the updated crowding distances is eliminated.

This process continues until the number of remaining solutions equals N . The remaining solutions are the

bestN solutions to be added to Pt+1. Compared with the static crowding distance calculation strategy, which

calculates the crowding distance for each solution once, the dynamic one has the advantage of producing

more uniformly distributed solutions.

4.4. Genetic operators

In NSGAII-DMS, we use binary tournament selection, simulated binary crossover (SBX) operator, and

the polynomial mutation (PM) operator to conduct genetic operations as that used in Deb et al. (2002). In

an iteration of the NSGA-II process, the tournament selection strategy is first used to select parent solutions.

Then, the SBX and PM operators are utilized to generate offspring solutions based on the selected parent

solutions. A brief introduction of the genetic operators is shown below.

The binary tournament selection strategy conducts N tournament selections to select N parent solutions

from the population. During each tournament selection, two solutions are first selected from the population

at random, and then, the one with a better fitness level is selected as the parent solution. The selected

parent solutions are then randomly mated into N/2 pairs, which are further used by the following crossover

and mutation operators.

The SBX operator generates two offspring solutions based on a pair of parent solutions with a crossover

probability of pc. Let x1 = [x1,1, x1,2, ..., x1,n]T and x2 = [x2,1, x2,2..., x2,n]T be two paired parent solutions.
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The SBX operator is applied to the ith (i = 1, 2, ..., n) variable of x1 and x2 with a probability of 0.5, which

update x1,i and x2,i into x
new
1,i = 0.5[(1 + γ)x1,i + (1− γ)x2,i]

xnew2,i = 0.5[(1− γ)x1,i + (1 + γ)x2,i]
. (20)

In Eq. (20), γ is a spread factor which is defined as

γ =


(
2u
) 1
ηc+1 ; if u ≤ 0.5(

1

2(1− u)

) 1
ηc+1

; otherwise

(21)

where u is a random number in (0,1) and ηc in the distribution index for the SBX operator.

The PM operator further updates each variable in a solution after the application of the crossover

operator. For a solution x = [x1, x2, ..., xn]T , with a crossover probability of pm, a variable xi (i = 1, 2, ..., n)

is updated into

xnewi = xi + δ(ui − li), (22)

where ui and li are the upper bound and lower bound of the ith variable in the encoded solution of NSGAII-

DMS. The δ in Eq. (22) is obtained as

δ =


[
2u+ (1− 2u)(1− δ1)ηm+1

] 1
ηm+1 − 1; if u ≤ 0.5

1−
[
2(1− u) + 2(u− 0.5)(1− δ2)ηm+1

] 1
ηm+1 ; otherwise

(23)

where u is a random number in (0,1), ηm in the distribution index for the PM operator, and δ1 and δ2 are

defined as δ1 = (xi − li)/(ui − li) and δ2 = (ui − xi)/(ui − li).

4.5. Poll center selection strategy

The selection of the poll center at each iteration affects the performance of the DMS process. In this

paper, we use the poll center selection strategy suggested by Li et al. (2020). Specifically, each solution

in Lns uses a parameter ω to record the number of times that this solution is selected as the poll center.

Then, the solution with the smallest ω value is selected as the poll center at an iteration. This setting makes

the poll step searches around different areas of the search space in turn, which can avoid the problem of

repeatably searching around some areas of the search space. If there is more than one solution with the

smallest ω value, we select the solution with the largest crowding distance. It means the poll step prefers

to search in the sparse local area of the search space with a few solutions.
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Table 1: Details of the CGA dataset.
Run Replication x1 x2 x3 y1 y2 y3 Run Replication x1 x2 x3 y1 y2 y3
1 1 -1 -1 -1 4.50 0.17 29.00 10 1 1 0 0 5.52 0.52 30.00

2 -1 -1 -1 4.50 0.26 23.00 2 1 0 0 5.39 0.51 24.00
2 1 1 -1 -1 6.04 0.50 23.00 11 1 0 -1 0 5.92 0.61 32.00

2 1 -1 -1 6.39 0.53 25.40 2 0 -1 0 5.93 0.59 23.40
3 1 -1 1 -1 3.81 0.17 22.00 12 1 0 1 0 4.74 0.36 36.00

2 -1 1 -1 4.09 0.20 27.00 2 0 1 0 4.50 0.30 21.00
4 1 1 1 -1 5.67 0.44 25.50 13 1 0 0 -1 5.01 0.36 27.00

2 1 1 -1 5.19 0.40 21.00 2 0 0 -1 4.70 0.25 24.00
5 1 -1 -1 1 4.67 0.32 20.00 14 1 0 0 1 4.94 0.53 38.00

2 -1 -1 1 4.22 0.32 41.00 2 0 0 1 5.01 0.51 25.00
6 1 1 -1 1 6.73 0.57 35.50 15 1 0 0 0 4.85 0.47 34.00

2 1 -1 1 6.57 0.57 18.00 2 0 0 0 4.94 0.46 34.00
7 1 -1 1 1 3.40 0.12 43.00 3 0 0 0 4.98 0.49 33.00

2 -1 1 1 4.32 0.28 20.00 4 0 0 0 4.89 0.48 24.00
8 1 1 1 1 5.72 0.46 19.00 5 0 0 0 4.94 0.46 19.00

2 1 1 1 5.09 0.50 34.00 6 0 0 0 5.01 0.47 25.00
9 1 -1 0 0 4.09 0.27 36.00

2 -1 0 0 4.38 0.23 24.00

4.6. Step size parameter update strategy

As we stated in Section 2.3, the step size parameter αxp of the poll center should be updated after each

iteration. As suggested by Custódio et al. (2011), we set αxp,new = xp if the generated Ltrial successfully

updates the current non-dominated set Lns and set αxp,new = βxp if Ltrial fails to update Lns, where β < 1

is a user-defined parameter. This means the step size is maintained at successful iterations and is reduced

at failure iterations.

5. Evaluating the performance of the proposed MRO model

This section verifies the proposed model with two test examples. In the following subsections, the

introduction of the test examples, parameter setting, benchmark methods, optimization results of the two

examples, the strategy to select the best compromise solution, and the discussion are given.

5.1. Test examples

5.1.1. Example 1: a production process of colloidal gas aphrons (CGAs)

A real MRO problem from a production process of colloidal gas aphrons (CGAs) is used as the first test

example. This problem was first reported by Jauregi et al. (1997) and then used by Kim & Lin (2006),

He et al. (2017), and Lee et al. (2018) to evaluate the performance of MRO methods. The CGAs are

microbubbles composed of a gaseous inner core covered by a thin surfactant film produced by intensively

stirring a surfactant solution (Jauregi et al., 1997). The quality of a CGA is measured by three response

variables, i.e., stability y1, volumetric ratio y2, and temperature y3. These three responses are the LTB,

STB, and NTB types, respectively. The input variables in the experiment are concentration of surfactant

x1, concentration of salt x2, and time of stirring x3. The purpose of this example is to find an optimal

setting for the three input variables by optimizing both the location and dispersion effects of the responses.
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In the experiment, a central composite design (CCD) with 8 factorial points, 6 axial points, and 1 center

point is adopted. The center point was replicated 6 times and the other points were replicated twice. Thus,

both the mean and standard deviation for each point are obtained and the response models for both the

location and dispersion effects can be fitted. The details of the CGA dataset is shown in Table 1, where

the coded values for the input variables are shown and the measurement units for the three responses are

y1 = log(seconds), y2 = none (ratio), and y3 =◦C.

The means and standard deviations of responses y1, y2, and y3 at each point are estimated based on the

samples from the experiment shown in Table 1. We use the ordinary least squares (OLS) method to obtain

the regression models. The fitted models are

ŷ1,µ(x) = 4.953 + 0.817x1 − 0.447x2 − 0.156x21 + 0.271x22 − 0.112x1x2 + 0.069x1x3, (24)

ŷ2,µ(x) = 0.459 + 0.133x1 − 0.061x2 + 0.045x3 − 0.065x21 − 0.035x23, (25)

ŷ3,µ(x) = 28.746− 1.480x1 + 2.330x3 − 0.781x21 − 1.181x22 − 0.712x1x3, (26)

ŷ1,σ(x) = 0.059 + 0.112x2 + 0.057x3 + 0.118x21 + 0.104x23 − 0.100x1x3 + 0.047x2x3, (27)

ŷ2,σ(x) = 0.021− 0.014x1 + 0.013x2 − 0.006x3 + 0.016x23 − 0.006x1x3 + 0.022x2x3, (28)

ŷ3,σ(x) = 6.082− 1.527x1 + 0.495x2 + 4.851x3 + 2.262x22 − 0.654x1x3 − 0.672x1x2x3, (29)

where ŷj,µ(x) denotes the fitted location effect model for the mean of response yj , and ŷj,σ(x) denotes the

fitted dispersion effect model for the standard deviation of response yj , j = 1, 2, 3.

The specifications, including the targets (Tj,µ and Tj,σ), upper limits (ymax
j,µ and ymax

j,σ ) and lower limits

(ymin
j,µ and ymin

j,σ ) for the means and standard deviations of the responses yi (j = 1, 2, 3) are shown in Table

2. The values in Table 2 are set based on the work by Kim & Lin (2006). The only difference is that we

relaxed the upper limits of the standard deviations of the responses, i.e., ymax
1,σ , ymax

2,σ , and ymax
3,σ are changed

from 0.10, 0.10, and 2.00 to 0.20, 0.20, and 3.00. The reason for this change is that the worst-case standard

deviations considering model uncertainty in the proposed method are larger than that without considering

model uncertainty. During the optimization process, the standard deviations of solutions considering model

uncertainty generally exceed the original upper limits, which makes the desirability function loses efficacy if

the original tight limits are used. Note that, since the standard deviation of each response is the STB type,

and the target and lower limit for each standard deviation are the same as that used by Kim & Lin (2006),

the optimization objective for the standard deviations of the responses does not change.

5.1.2. Example 2: a synthetic MRO problem

Besides the CGA example, we propose a synthetic MRO problem to further verify the proposed method.

The details of the designed experiment and the response values for each input parameter setting for this
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Table 2: Specification information of the responses in the CGA Example.

Response Tj,µ ymin
j,µ ymax

j,µ Ti,σ ymin
j,σ ymax

j,σ

y1 (LTB) 7.00 3.00 7.00 0.00 0.00 0.20
y2 (STB) 0.10 0.10 0.60 0.00 0.00 0.20
y3 (NTB) 30.00 15.00 45.00 1.00 1.00 3.00

Table 3: Details of the synthetic dataset.
Run Replication x1 x2 x3 y1 y2 y3 Run Replication x1 x2 x3 y1 y2 y3
1 1 -1 -1 -1 30.74 51.26 9.92 10 1 1 0 0 32.10 51.64 10.70

2 -1 -1 -1 28.65 50.11 9.61 2 1 0 0 30.38 50.76 10.29
2 1 1 -1 -1 34.47 41.00 11.21 11 1 0 -1 0 34.83 52.54 11.25

2 1 -1 -1 32.58 39.87 11.18 2 0 -1 0 33.16 51.29 11.02
3 1 -1 1 -1 26.58 48.08 9.08 12 1 0 1 0 32.41 47.52 9.46

2 -1 1 -1 24.72 46.63 8.74 2 0 1 0 30.62 46.21 9.05
4 1 1 1 -1 28.72 47.56 9.01 13 1 0 0 -1 29.60 48.45 9.59

2 1 1 -1 26.96 46.56 8.84 2 0 0 -1 27.50 47.25 9.32
5 1 -1 -1 1 31.22 54.14 11.09 14 1 0 0 1 28.21 51.31 10.50

2 -1 -1 1 29.60 53.41 11.03 2 0 0 1 26.56 50.29 10.24
6 1 1 -1 1 33.99 48.07 10.83 15 1 0 0 0 29.49 53.19 8.98

2 1 -1 1 32.58 47.09 10.35 2 0 0 0 29.67 52.15 9.22
7 1 -1 1 1 27.41 52.52 12.01 3 0 0 0 30.57 52.01 9.10

2 -1 1 1 25.68 51.49 11.79 4 0 0 0 29.34 51.38 9.38
8 1 1 1 1 28.64 51.40 12.30 5 0 0 0 31.59 53.12 9.20

2 1 1 1 26.82 50.00 11.78 6 0 0 0 27.51 52.12 8.67
9 1 -1 0 0 29.16 50.98 10.16

2 -1 0 0 27.28 50.03 9.95

synthetic MRO problem are shown in Table 3. The specification information of the three responses in

the synthetic example is shown in Table 4. The three responses y1, y2, and y3 are LTB, NTB, and STB

types, respectively. This synthetic MRO problem aims to find a good parameter setting for the three input

variables x1, x2, and x3 while simultaneously optimizing these responses with respect to the specification

information. Moreover, as shown in Table 3, a central composite design (CCD) with 8 factorial points, 6

axial points, and 1 center point is adopted. The center point is replicated 6 times and the other points

are replicated twice. Thus, we can compute the mean and standard deviation for each point to obtain the

location effect and dispersion effect regression models, which are used in the optimization process of the

MRO methods. The fitted regression models with the OLS method are shown as

ŷ1,µ(x) = 30.469 + 1.288x1 − 1.858x2 + 2.160x22 − 2.883x23 − 1.403x1x3, (30)

ŷ2,µ(x) = 48.593− 2.176x1 + 2.407x3 + 2.204x23 − 2.671x1x3, (31)

ŷ3,µ(x) = 10.179− 0.493x2 + 0.760x3 − 0.988x21 + 0.724x22 + 0.932x2x3, (32)

ŷ1,σ(x) = 1.331 + 0.143x2 − 0.090x3 − 0.210x22 + 0.183x23 + 0.088x2x3, (33)

ŷ2,σ(x) = 0.832− 0.037x1 + 0.058x2 − 0.042x3 − 0.066x21 + 0.107x1x3, (34)

ŷ3,σ(x) = 0.201 + 0.066x1 + 0.076x3 − 0.119x1x2 + 0.079x1x3, (35)

where ŷj,µ(x) and and ŷj,σ(x) are the fitted location effect and dispersion effect models for response yj ,

j = 1, 2, 3.
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Table 4: Specification information of the responses in the synthetic example.

Response Tj,µ ymin
j,µ ymax

j,µ Ti,σ ymin
j,σ ymax

j,σ

y1 (LTB) 35.00 25.00 35.00 0.50 0.50 1.50
y2 (NTB) 50.00 40.00 60.00 0.00 0.00 0.70
y3 (STB) 5.00 5.00 15.00 0.00 0.00 0.20

5.2. Parameter setting

NSGAII-DMS is composed of the NSGA-II and the DMS processes. Since the DMS process can be

seen as a separate process further tuning the solutions returned by the NSGA-II process, it does affect the

inner search mechanism of the NSGA-II process. Therefore, the parameters used in the NSGA-II process of

NSGAII-DMS are set based on the NSGA-II algorithm that is used in Deb et al. (2002). These parameters

in NSGA-II are well-tuned and widely used in many optimization problems. Specifically, the population size

is set as N = 100, the crossover probability is set as pc = 0.9, the mutation probability is set as pc = 1/n (n

is the number of input variables), and the distribution indices for the cross and mutation operators are set

as ηc = 20 and ηm = 20.

The total number of function evaluations of NSGAII-DMS is set as 25,000, which is the same as Deb

et al. (2002). However, since NSGAII-DMS is composed of the NSGA-II and DMS processes. We need to

further tune the number of generations T of the NSGA-II process and the number of function evaluations E

of the DMS process. Moreover, the parameters used in the DMS process are the initial step size parameter

α0, and the parameter β that controls the change of the step size. The original study of DMS by Custódio

et al. (2011) sets α0 = 1 and β = 0.5, which means a relatively large initial step size is used to ensure

the global search performance of DMS and the step size is halved at failure iterations. We have conducted

several initial experiments which have shown that these parameters are not suitable for NSGAII-DMS. This

is because, in NSGAII-DMS, we have already used the NSGA-II process to globally update solutions before

the DMS process. Thus, it would be better to use a relatively small α0 value to make the DMS process

focus on the local search. Therefore, the two parameters α0 and β should be further tuned.

According to the above analysis, four parameters are required to be further tuned. They are the number

of generations T of the NSGA-II process, the number of function evaluations E of the DMS process, and the

parameters α0 and β in the DMS process. Moreover, since T and E should meet the constraint 100∗T+E =

25, 000 (25,000 is the total number of function evaluations), we only need to tune three parameters for

NSGAII-DMS, i.e., T , α0, and β. The details of the experiments that tune the three parameters are shown

in Appendix Appendix A. Based on the tuning experiments, we obtain the following desirable parameter

values: T = 100, α0 = 0.4, and β = 0.85. Then, with the constraints 100 ∗ T + E = 25, 000 we obtain

E = 15, 000. Finally, we obtain a desirable parameter setting for NSGAII-DMS, i.e., population size

N = 100, maximum number of generations of the GA process T = 100, crossover probability Pc = 0.9,

mutation probability Pm = 1/n, maximum number of function evaluations of the DMS process E = 15, 000,
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initial step size parameter α0 = 0.4, and the parameter for updating the step size β = 0.85. This parameter

setting will be used in the following experiments.

5.3. Benchmark methods

Six MRO methods, denoted by TDF (Derringer, 1994), FDF1 (Kim & Lin, 2000), FDF2 (Kim & Lin,

2006), RDF (He et al., 2012), RFDF (He et al., 2017), and MDF (Lee et al., 2018), are adopted as the

benchmark methods to verify the performance of the proposed model. TDF is the traditional desirability

function method that optimizes the location effect of multiple responses. FDF1 is a fuzzy desirability function

method that optimizes the location effect of multiple responses. FDF2 is a variant of FDF1 that considers

both the location and dispersion effects of MRO problems. RDF is a robust MRO method that considers the

location effect of multiple responses as well as model uncertainty. RFDF is a robust fuzzy desirability function

method that considers the location effect, dispersion effect, and model uncertainty for MRO problems.

The above four benchmark methods construct an MRO problem as a single objective optimization model

and adopt single objective optimization algorithms to find the final solution. In comparison, the MDF

method is a multi-objective approach that forms an MRO problem into a multi-objective optimization

model. Specifically, the location and dispersion effects of multiple responses are modeled respectively using

the desirability functions, and the two effects are simultaneously optimized. It should be noted that the

difference between this model and the optimization model in our method is that model uncertainty is

additionally considered in our model. To make a fair comparison between the two multi-objective MRO

models, the optimization model of MDF is optimized by the same NSGAII-DMS as that is used in our

method.

In the two test examples, the methods (including RDF, RFDF, and the proposed method) considering

model uncertainty use a moderate family error of 0.4 (in which case the significance level α for each re-

sponse is around 0.1566) to calculate the confidence intervals to obtain the robust desirability values for

the optimization models as suggested by He et al. (2012). Moreover, for all the compared methods, a linear

desirability function and the same weight value (i.e., wj,µ = wj,σ = 1, j = 1, 2, 3) for the three responses are

employed to construct desirability functions for the optimization models as suggested by Kim & Lin (2006).

The optimization results of the two examples obtained by the MRO methods will be compared in detail

below in Sections 5.4 and 5.5. In the two sections, we first compare the overall robust desirability values on

the location and desirability effects of the methods. Then, we compare the solutions’ mean and standard

deviation values on the responses. Finally, we compare the solutions’ worst mean and standard deviation

values in the 1−α confidence intervals on the responses, which means model uncertainty is considered during

the comparison.
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5.4. The optimization results of Example 1 (the CGA example)

5.4.1. Comparison of the obtained robust desirability values

Fig. 2 shows the overall robust desirability values of the location (Dr
µ) and dispersion effects (Dr

σ) of the

compared methods in . The x-axis denotes the overall robust desirability value of the location effect (based

on Eq. (15)) and the y-axis denotes the overall robust desirability value of the dispersion effect (based on

Eq. (17)). Each point in the figure denotes the robust desirability value of the location effect and that of

the dispersion effect for a solution.
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Figure 2: Overall robust desirability values of the location (Dr
µ) and dispersion (Dr

σ) effects obtained by the MRO methods
in the CGA example.

According to Fig. 2, the proposed method shows better performance than the benchmark methods. First,

the proposed method and the MDF method return a set of solutions instead of one single solution since

the two methods are multi-objective MRO methods. Specifically, the proposed method can find solutions

with different Dr
µ and Dr

σ values that are well distributed on the non-dominated front. This is because the

proposed method simultaneously optimizes Dr
µ and Dr

σ with respect to the location and dispersion effects.

The solutions of MDF on the northwest side of the figure are close to the solutions found by the proposed

method. However, the solutions of MDF on the southeast side of the figure seem to be undesirable from the

perspective of optimizing both the two effects, since the Dr
σ values of these solutions are 0. This denotes

that the worst standard deviation values of the solutions of MDF in the 1−α confidence intervals predicted

by the models do not meet the required specifications because MDF does not consider model uncertainty.

Second, the TDF, FDF1, FDF2, RDF, and RFDF methods obtain Dr
σ values of 0. This shows that these

methods do not obtain desirable solutions that can meet the standard deviation specifications. One reason

that leads to this result is that the TDF, FDF1, and RDF methods do not consider the dispersion effect when
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(a) Mean.

(b) Standard deviation.

Figure 3: Comparison of the mean (ŷj,µ, j = 1, 2, 3) and standard deviation (ŷj,σ , j = 1, 2, 3) values of the three responses
for the solutions obtained by the MRO methods in the CGA example. The x-axis/y-axis in subfigures (a)-I, (a)-II, and (b)-III
are ŷ1,µ/ŷ2,µ, ŷ1,µ/ŷ3,µ, and ŷ2,µ/ŷ3,µ. The x-axis/y-axis in subfigures (b)-I, (b)-II, and (b)-III are ŷ1,σ/ŷ2,σ , ŷ1,σ/ŷ3,σ , and
ŷ2,µ/ŷ3,σ . The areas that meet the required specifications are marked in gray.

constructing the optimization models. For the FDF2 and RFDF methods, although the dispersion effect is

considered when forming the optimization model, the uncertainty of the fitted dispersion effect regression

models is not considered, which leads to the bad performance of the obtained solutions. Considering only the

location effect, the RDF method obtains the best Dr
µ value because this method establishes an optimization

model considering model uncertainty to optimize the mean values (location effect) of the responses.

5.4.2. Comparison of the obtained mean and standard deviation values

In order to give a direct view of the mean and standard deviation results of the solutions obtained by

the methods, we show the mean (ŷj,µ, j = 1, 2, 3) and standard deviation (ŷj,σ, j = 1, 2, 3) values of the 3

responses for the obtained solutions in Fig 3 (note that the effect of model uncertainty is not shown in the

two figures). Specifically, in Figs 3a and 3b, we use three subfigures to show the results. Each subfigure

shows the performance of the solutions in terms of two of the three responses.

Several results can be found in Fig. 3a. First, the solutions obtained by the proposed method are close

to the solutions obtained by the MDF method. In the meantime, the ranges of the solutions obtained by
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the MDF method on the three subfigures are larger than those of the proposed method, which means that

the ŷi,µ values of the solutions of MDF vary more widely than those of the proposed method. This may be

because the proposed method adopts stricter constraints in the optimization model by considering model

uncertainty, which results in more concentrated solutions shown in Fig. 3a. Second, for the single objective

optimization based methods (the methods except for MDF and the proposed method), all the obtained

solutions meet the specifications of the responses. It should be noted that these methods have different

preferences for the three responses. For example, the TDF method obtains the best (lowest) ŷ2,µ value

while obtaining the worst (lowest) ŷ3,µ value. The FDF1 method obtains the highest (best) ŷ1,µ value while

obtaining a worse (higher) ŷ2,µ value than the TDF, RDF, and RFDF methods.

According to Fig. 3b, the ŷ3,σ values of TDF, FDF1, and RDF on response y3 (i.e., ŷ3,σ) exceed the upper

specification limit ymax
3,σ = 3.00. This is because the three methods do not consider the dispersion effect when

constructing the optimization models. In comparison, all the ŷj,σ (j = 1, 2, 3) values of FDF2, RFDF, MDF,

and the proposed method on the responses meet the specifications because these methods consider both the

location and dispersion effects. Comparing between the two multi-objective MRO methods, the ranges of

the standard deviation values of the solutions obtained by the proposed method are narrower than that

of the MDF method. This is because the proposed method adopts the robust overall desirability function

that considers model uncertainty to model the location effect instead of the traditional desirability function

used by MDF. For the RFDF method, the standard deviation value ŷ3,σ equals the upper specification limit

ymax
3,σ = 3.00. This is because meeting the standard deviation specifications of the responses is used as the

constraints in RFDF instead of being used as a part of the objective function in the optimization model.

5.4.3. Comparison of the obtained worst-case mean and standard deviation values considering model uncer-

tainty

The uncertainty caused by the regression models is not shown in Fig 3. To give a more comprehensive

view of the performance of the MRO methods, one additional figure, Fig 4, is plotted. In the figure, the

robust mean (ŷrj,µ, j = 1, 2, 3) and standard deviation (ŷrj,σ, j = 1, 2, 3) results of the methods are shown,

which considers the uncertainty of the fitted regression models. Specifically, the ŷrj,µ value for a solution

x is defined as the worst value (according to the LTB, STB, or NTB type of the response) in the 1 − α

confidence interval [yLj,µ(x), yUj,µ(x)] (defined in Eq. (9)). The ŷrj,σ value for a solution x is defined as the

worst value in the 1− α confidence interval [yLj,σ(x), yUj,σ(x)].

According to Fig. 4a, all the robust mean values of the solutions obtained by the compared methods

meet the specifications. The relative position of the solutions obtained by the methods shown in Fig. 4a

is similar to that shown in Fig. 3a. The difference is that the distances between these solutions and the

target are larger than that in Fig. 3a because the robust mean values (i.e., the worst mean value in the

confidence interval) are used to show the methods’ performance. A similar result is found in Fig. 4b, i.e.,
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(a) Mean.

(b) Standard deviation.

Figure 4: Comparison of the robust mean (ŷrj,µ, j = 1, 2, 3) and standard deviation (ŷrj,σ , j = 1, 2, 3) values of the three

responses for the solutions obtained by the MRO methods in the CGA example. The x-axis/y-axis in subfigures (a)-I, (a)-II,
and (b)-III are ŷr1,µ/ŷr2,µ, ŷr1,µ/ŷr3,µ, and ŷr2,µ/ŷr3,µ. The x-axis/y-axis in subfigures (b)-I, (b)-II, and (b)-III are ŷr1,σ/ŷr2,σ ,

ŷr1,σ/ŷr3,σ , and ŷr2,µ/ŷr3,σ . The areas that meet the required specifications are marked in gray.

the distances between the solutions and the target in Fig. 4b are larger than that shown in Fig. 3b. The

standard deviations of responses y1 and y2 (i.e., ŷr1,σ and ŷr2,σ) of all the solutions found by the methods

meet the specifications. However, on response y3, only the standard deviations from the solutions of the

proposed method are within the upper specification limit (i.e., ymax
3,σ = 3.00). Compared with the results

shown in Fig. 3b, the solutions of RFDF and FDF2 as well as partial solutions of MDF also exceed the upper

specification limit (i.e., ymax
3,σ = 3.00) in addition to TDF, FDF1, and RDF. This is because even RFDF and

MDF consider the location effect of responses, they do not consider model uncertainty. In comparison, the

solutions of the proposed method meet all the specifications, which shows that the proposed MRO model

performs most effectively by considering model uncertainty.

5.5. The optimization results of Example 2 (the synthetic example)

5.5.1. Comparison of the obtained robust desirability values

Fig. 5 shows the overall robust desirability values of the location (Dr
µ) and dispersion (Dr

σ) effects of

the solutions obtained by the compared methods. Each point in the figure denotes the robust desirability
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Figure 5: Overall robust desirability values of the location (Dr
µ) and dispersion (Dr

σ) effects obtained by the MRO methods
in the synthetic example.

values of the location and dispersion effects for a solution. According to the figure, the proposed method

obtains a set of solutions that are well distributed on the non-dominated front. These solutions have different

combinations of the Dr
µ and Dr

σ values. In comparison, the benchmark methods do not show desirable Dr
µ

and Dr
σ results. First, the TDF, FDF1, RDF, and RFDF methods generally obtain better results on the

location effect than the proposed method because the Dr
µ values of these benchmark methods are greater

than that of the proposed method. However, the Dr
σ values of these benchmark methods are 0, which means

that these methods do not obtain a solution with desirable performance on the dispersion effect. Second, the

FDF2 method obtains a better Dr
σ value than the proposed method while obtaining a Dr

µ value of 0. This

denotes that the obtained solution of FDF2 does not perform well on the location effect. Finally, similar to

the proposed method, the MDF method obtains a set of solutions. Although some solutions of MDF have

Dr
µ and Dr

σ values similar to the proposed method, the solutions of MDF on the southeast side of the figure

obtain a Dr
σ value of 0. This shows that MDF obtains inferior solutions since it does not consider model

uncertainty in the optimization model.

To conclude, the results in Fig. 5 reveal that the proposed method obtains better optimization results

on both Dr
µ and Dr

σ in the synthetic example. This shows that our MRO model proposed in Eq.(18) can

effectively address the location and dispersion effects while considering model uncertainty.

5.5.2. Comparison of the obtained mean and standard deviation values

Fig. 6 shows the mean (ŷj,µ, j = 1, 2, 3) and standard deviation (ŷj,σ, j = 1, 2, 3) values of the responses

for the obtained solutions without considering model uncertainty. Similar to that in Section 5.4.2, each

subfigure in Fig. 3a or 3b shows the mean or standard deviation results of the obtained solutions in terms
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(a) Mean.

(b) Standard deviation.

Figure 6: Comparison of the mean (ŷj,µ, j = 1, 2, 3) and standard deviation (ŷj,σ , j = 1, 2, 3) values of the 3 responses for
the solutions obtained by the MRO methods in the synthetic example. The x-axis/y-axis in subfigures (a)-I, (a)-II, and (b)-III
are ŷ1,µ/ŷ2,µ, ŷ1,µ/ŷ3,µ, and ŷ2,µ/ŷ3,µ. The x-axis/y-axis in subfigures (b)-I, (b)-II, and (b)-III are ŷ1,σ/ŷ2,σ , ŷ1,σ/ŷ3,σ , and
ŷ2,µ/ŷ3,σ . The areas that meet the required specifications are marked in gray.

of two of the three responses.

According to Fig. 6a, it is obvious that all the solutions found by the compared methods meet the

required specifications since all these methods consider the location effect. Similar to the results in the

CGA example, different MRO methods have different preferences. The TDF and RDF methods obtain

desirable ŷ1,µ and ŷ2,µ results while obtaining bad ŷ3,µ results. The FDF1 and RFDF methods obtain

better ŷ3,µ results while obtaining worse or similar ŷ1,µ results compared with other methods. Moreover,

the obtained solutions of MDF and the proposed method are close. However, the ranges of ŷj,µ (j = 1, 2, 3)

of MDF are larger than that of the proposed method. This is because the proposed method considers the

model uncertainty of the location and dispersion effect models, which narrows its solution space. Finally,

the solution of FDF2 is farthest from the target among the solutions obtained by all the methods, which

indicates FDF2 obtain the worst results on the location effect. This is because, in this synthetic example,

the dispersion effect takes priority over the location effect in FDF2 as we can find in Fig. 5 that FDF2

obtains an excellent Dr
σ value.
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According to Fig. 6b, the ŷ1,σ, ŷ2,σ, and ŷ3,σ values of the proposed method, FDF2, RFDF, and MDF

meet the required specifications, whereas the ŷ2,σ values obtained by TDF, FDF1, and RDF exceed the

upper specification limit ymax
2,σ = 0.70. This is because the optimization models of TDF, FDF1, and RDF

only consider the location effect while neglecting the dispersion effect. Similar to the results found in the

CGA example, the ranges of the standard deviation values obtained by the proposed method are narrower

than that of MDF. Specifically, the ŷ2,σ value of the proposed method is much lower than that of MDF

because the proposed method handles the model uncertainty problem by optimizing the worst-case standard

deviation value in the 1 -α interval [yLj,σ(x), yUj,σ(x)] instead of ŷj,σ(x) used in MDF. This ensures that, in

the worst case, the standard deviation of response y2 does not exceed the upper specification limit. To sum

up, the results in Fig. 6 indicate that all the solutions obtained by the proposed method meet the required

specifications of the three responses.

5.5.3. Comparison of the obtained worst-case mean and standard deviation values considering model uncer-

tainty

Similar to that in Section 5.4.3, the robust mean (ŷrj,µ, j = 1, 2, 3) and standard deviation (ŷrj,σ, j = 1, 2, 3)

values of the three responses obtained by the methods are shown in Fig. 7. The robust mean or standard

deviation indicates the worst-case value in the 1- α confidence interval. According to Fig. 7a, the methods

except for FDF2 obtain ŷrj,µ values on the three responses that meet the required specifications. The solution

of FDF2 fails to meet the required specification of response y2 because the ŷr2,µ value exceeds the upper

specification limit ymax
2,µ = 60.00. According to Fig. 7b, except for the proposed method and FDF2 method,

the compared methods fail to obtain solutions meeting the required standard deviation specifications. The

ŷrj,σ values of the solutions of TDF, FDF1, RDF, and RFDF exceed the required upper specification limits

ymax
j,σ on at least one response, and the ŷrj,σ values of a portion of the solutions of MDF violate the required

specification limits ymax
j,σ . Overall, the results in Fig. 7 indicate that either ŷrj,µ or ŷrj,σ of the benchmark

methods fails to meet the required specifications. In comparison, all the ŷrj,µ and ŷrj,σ values of the proposed

method are within the required specification limits. This shows the effectiveness of the proposed method.

To sum up, the optimization results of the two examples in Sections 5.4 and 5.5 have shown that the

proposed MRO model is effective. The proposed model considers both the location and dispersion effects

of multiple responses. Meanwhile, the uncertainty of the fitted regression models is considered. Thus, the

solutions yielded by the proposed model can meet all the required specifications. In comparison, the models

of the benchmark methods do not comprehensively consider the two effects and model uncertainty. Therefore,

these benchmark methods may obtain solutions that fail to meet some specifications of the responses.
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(a) Mean.

(b) Standard deviation.

Figure 7: Comparison of the robust mean (ŷrj,µ, j = 1, 2, 3) and standard deviation (ŷrj,σ , j = 1, 2, 3) values of the 3 responses

for the solutions obtained by the MRO methods in the synthetic example. The x-axis/y-axis in subfigures (a)-I, (a)-II, and
(b)-III are ŷr1,µ/ŷr2,µ, ŷr1,µ/ŷr3,µ, and ŷr2,µ/ŷr3,µ. The x-axis/y-axis in subfigures (b)-I, (b)-II, and (b)-III are ŷr1,σ/ŷr2,σ , ŷr1,σ/ŷr3,σ ,

and ŷr2,µ/ŷr3,σ . The areas that meet the required specifications are marked in gray.

5.6. Selecting the best compromise solution

The proposed method, a multi-objective MRO method, returns a set of non-dominated solutions with

different desirability values on the location and dispersion effects. One merit of this multi-objective method

is that DMs can further select the best compromise solution from the returned candidate solutions by

investigating the trade-off between the two effects. In this selection procedure, DMs’ preferences can be

considered. The multi-objective decision methods, such as IPM (Li et al., 2016), TOPSIS (Lai et al., 1994;

Ouyang et al., 2021) and the posterior preference articulation approach (Lee et al., 2018), can also be

involved in this procedure to help DMs make a choice.

In this paper, we propose to use IPM to select the best compromise solution from the non-dominated

solutions found by the proposed method. IPM has shown to be a simple and effective multi-objective

decision method that is able to select the best compromise solution from the non-dominated solutions. IPM

first defines an ideal point in the objective space and then selects the solution closest to the ideal point

as the best compromise solution. Li et al. (2016) applied IPM to select the best compromise solution for
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a key quality characteristic selection problem using NSGA-II. In this application, the ideas of solving the

incommensurable problem of different objective functions and defining the ideal point using the information

of the found non-dominated solutions are used. Let Lns = {x1, ...,xs} be the set of non-dominated solutions

found by a multi-objective optimization algorithm and fj(xk) (j = 1, ...,m and k = 1, ..., s) be the jth

objective function value for xk. The procedure of IPM used by Li et al. (2016) can be simply described as

follows:

First, to solve the incommensurable problem, the normalized objective function value for each solution

in Lns is obtained by the Z-score normalization method as

fNj (xk) =
fj(xk)− fj

σ(fj)
, j = 1, ...,m, k = 1, ..., s, (36)

where fj and σ(fj) denote the mean and standard deviation of the objective function values of the solutions

in Lns, respectively.

Second, the ideal point is defined based on the normalized objective function values as

(f∗1 , ..., f
∗
m) =

(
min

k∈{1,...,s}
fN1 (xk), ..., min

k∈{1,...,s}
fNm (xk)

)
. (37)

Finally, by selecting the solution in Lns that is closest to the ideal point, we obtain the best compromise

solution as

x∗ = arg min
xk∈Lns

√√√√ m∑
j=1

(fNj (xk)− f∗j )2. (38)

We use the above mentioned IPM procedure to select the best compromise solution from the non-

dominated solutions found by the proposed method. For a comparison purpose, the best compromise solution

for the MDF method is also selected by IPM. The comparison of the search results between the benchmark

methods and the proposed method with IPM in the CGA and synthetic examples are shown in Table 5,

where the best solution x∗ = (x∗1, x
∗
2, x
∗
3), the predicted mean ŷj,µ(x∗) and standard deviation ŷj,σ(x∗) on

each response yj (j = 1, 2, 3), and the 1 − α confidence limits (yLj,σ(x∗), yUj,σ(x∗)) and (yLj,σ(x∗), yUj,σ(x∗))

corresponding to each predicted mean and standard deviation are listed for each method.

According to Table 5, we find that, except for the proposed method, the predicted “mean/standard

deviation” value or the upper/lower confidence limit of the solution found by the rest methods exceeds the

required specification in the two examples. Specifically, in the CGA example, the ŷ3,σ(x∗) values and the

corresponding upper confidence limits yU3,σ(x∗) of TDF, FDF1, and RDF exceed the upper specification limit

ymax
3,σ = 3.00, and the upper confidence limits yU3,σ(x∗) of FDF2, RFDF, and MDF (with IPM) exceed the

specification ymax
3,σ = 3.00. In the synthetic example, the ŷ2,σ(x∗) values and corresponding upper confidence

limits yU2,σ(x∗) of TDF, FDF1, and RDF exceed the upper specification limit ymax
2,σ = 0.70, the upper
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Table 5: Comparison of the optimization results between the benchmark methods and the proposed method with IPM.

Example Metric
The proposed method

with IPM
TDF FDF1 FDF2 RDF RFDF MDF with IPM

CGA

x∗1 -0.415 -0.948 -0.567 -0.352 -0.817 -0.580 -0.624
x∗2 -0.167 -1.000 -0.938 -0.514 -0.826 -0.771 -0.450
x∗3 -1.000 -1.000 -1.000 -1.000 -0.887 -1.000 -1.000
ŷ1,µ(x∗) 4.691 4.717 5.078 4.952 4.712 4.924 4.651
ŷ2,µ(x∗) 0.323 0.256 0.340 0.356 0.290 0.327 0.299
ŷ3,µ(x∗) 26.567 25.260 25.561 26.278 26.044 25.897 26.351
ŷ1,σ(x∗) 0.074 0.053 0.027 0.052 0.039 0.038 0.061
ŷ2,σ(x∗) 0.047 0.059 0.055 0.050 0.051 0.054 0.051
ŷ3,σ(x∗) 1.620 4.463 3.608 2.002 4.086 2.999 2.201
(yL1,µ(x∗), yU1,µ(x∗)) (4.541,4.842) (4.501,4.933) (4.903,5.254) (4.810,5.095) (4.541,4.883) (4.770,5.077) (4.501,4.802)
(yL2,µ(x∗), yU2,µ(x∗)) (0.273,0.374) (0.203,0.309) (0.287,0.394) (0.303,0.409) (0.245,0.335) (0.276,0.379) (0.251,0.346)
(yL3,µ(x∗), yU3,µ(x∗)) (25.867,27.267) (24.505,26.016) (24.892,26.231) (25.633,26.922) (25.419,26.669) (25.273,26.520) (25.678,27.024)
(yL1,σ(x∗), yU1,σ(x∗)) (-0.013,0.161) (-0.053,0.159) (-0.077,0.130) (-0.043,0.147) (-0.046,0.124) (-0.059,0.135) (-0.025,0.146)
(yL2,σ(x∗), yU2,σ(x∗)) (0.029,0.066) (0.029,0.088) (0.029,0.081) (0.030,0.070) (0.026,0.075) (0.030,0.078) (0.030,0.073)
(yL3,σ(x∗), yU3,σ(x∗)) (0.434,2.807) (2.847,6.080) (2.345,4.872) (0.924,3.080) (2.798,5.375) (1.819,4.180) (0.983,3.419)

Synthetic

x∗1 -1.000 -1.000 1.000 -1.000 -0.884 1.000 -1.000
x∗2 -1.000 -1.000 0.941 -1.000 -1.000 -0.153 -1.000
x∗3 0.846 -0.163 -0.630 1.000 -0.114 -0.659 0.521
ŷ1,µ(x∗) 32.322 32.895 31.663 31.720 33.170 31.765 33.147
ŷ2,µ(x∗) 56.643 50.000 47.457 58.050 50.000 47.546 54.014
ŷ3,µ(x∗) 10.262 10.435 8.337 10.236 10.643 8.875 10.318
ŷ1,σ(x∗) 0.959 1.012 1.356 0.984 1.001 1.451 0.935
ŷ2,σ(x∗) 0.619 0.769 0.742 0.597 0.771 0.677 0.668
ŷ3,σ(x∗) 0.012 0.015 0.058 0.012 0.036 0.184 0.013
(yL1,µ(x∗), yU1,µ(x∗)) (31.296,33.349) (31.715,34.074) (30.672,32.654) (30.633,32.806) (32.010,34.330) (30.798,32.732) (32.067,34.227)
(yL2,µ(x∗), yU2,µ(x∗)) (54.766,58.521) (48.220,51.781) (45.731,49.183) (55.915,60.185) (48.281,51.719) (45.812,49.281) (52.298,55.730)
(yL3,µ(x∗), yU3,µ(x∗)) (9.930,10.595) (10.181,10.690) (8.053,8.622) (9.877,10.595) (10.399,10.888) (8.549,9.202) (10.033,10.603)
(yL1,σ(x∗), yU1,σ(x∗)) (0.878,1.040) (0.924,1.099) (1.283,1.430) (0.894,1.073) (0.913,1.089) (1.385,1.517) (0.854,1.016)
(yL2,σ(x∗), yU2,σ(x∗)) (0.555,0.684) (0.717,0.822) (0.683,0.800) (0.528,0.666) (0.723,0.819) (0.624,0.729) (0.611,0.725)
(yL3,σ(x∗), yU3,σ(x∗)) (-0.038,0.063) (-0.026,0.057) (0.012,0.103) (-0.042,0.066) (-0.001,0.073) (0.145,0.223) (-0.031,0.058)

“ ” denotes the mean or standard deviation is out of the required specification.

confidence limits yU1,σ(x∗), yU2,σ(x∗), and yU3,σ(x∗) of RFDF exceed the corresponding upper specification

limits ymax
1,σ = 1.50, ymax

2,σ = 0.70, and ymax
3,σ = 0.20, the upper confidence limit yU2,µ(x∗) of FDF2 exceeds the

upper specification limit ymax
2,µ = 60.00, and the upper confidence limit yU2,σ(x∗) of MDF (with IPM) exceeds

the upper specification limit ymax
2,σ = 0.70. These results show that the proposed method outperforms these

benchmark methods.

5.7. Discussion

In an MRO problem, both the mean (location effect) and standard deviation (dispersion effect) of each

response should be optimized in order to obtain a solution of high and stable performance. The necessity of

considering the dispersion effect has been shown in the above two examples. The methods (i.e., TDF, FDF1,

and RDF) considering only the location effect can obtain solutions that meet the “mean” specifications, while

the obtained solutions of them fail to meet the “standard deviation” specifications. This means that the

obtained solutions of these methods can obtain responses with high performance (i.e., the mean values

of responses are close to the targets), but the performance of the responses may not be stable (i.e., the

standard deviation of a response is great). From the point of view of robust design, the solutions from

these methods are not robust enough. In comparison, the other four methods (i.e., the proposed method,

FDF2, RFDF, and MDF) that consider both the location and dispersion effects can obtain solutions that

meet all the “mean” and “standard deviation” specifications (without considering the uncertainty of the
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fitted models). The solutions of these four methods are more robust than those of TDF, FDF1, and RDF.

Moreover, the proposed method, FDF2, RFDF, and MDF provide three strategies to handle the dispersion

effect with the optimization model. FDF2 uses a “max-min” scheme that maximizes the minimum degree

of satisfaction with respect to the means and standard deviations of multiple responses. In this scheme, the

objective function value of the optimization model is decided by a response’s mean or standard deviation

with the lowest desirability value, and thus the desirability values on other responses are neglected in the

optimization model (Kim & Lin, 2006). RFDF treats the location effect of each response as a constraint

in the optimization model. The degree of satisfaction of the overall location effect of multiple responses

is set as the objective to be optimized. The RFDF method assumes that optimizing the location effect is

more important than optimizing the dispersion effect. However, this assumption does not always hold in

practice. In comparison, the proposed method and MDF use a more straightforward strategy that explicitly

treats location and dispersion effects as two separate objectives to be optimized, and the multi-objective

optimization models are constructed as simultaneously optimizing the overall desirability values of the two

effects.

In MRO, the optimization for multiple responses is based on the fitted regression models with the data

collected from experiments. In practice, we cannot obtain a perfectly fitted model that precisely predicts

the true response value of given input variables, which is referred to as the model uncertainty problem. To

obtain a reliable solution, model uncertainty cannot be neglected. The proposed method adopts a worst-

case strategy as used by He et al. (2012) to handle model uncertainty. Specifically, this strategy constructs

a robust desirability function that considers the worst response values in the confidence intervals of the

responses predicted by the fitted models. This strategy can address the issue that over-optimistic but not

reliable solutions are obtained. In the above examples, the proposed method, RDF, and RFDF have adopted

this worst-case strategy to handle model uncertainty. However, it should be noted that RDF and RFDF

only consider the uncertainty of the fitted “mean” regression models. As a result, the obtained solutions of

RDF and RFDF fail to meet the “standard deviation” specifications on some responses in the two examples.

In comparison, the proposed method considers the uncertainty of both the fitted “mean” and “standard

deviation” models, and the obtained solutions meet all the required specifications.

The proposed method and MDF are based on the multi-objective optimization scheme, while other meth-

ods are based on the single objective optimization scheme. The multi-objective scheme can find a set of

non-dominated solutions with different satisfactory levels on the location and dispersion effects by simul-

taneously optimizing the two effects. DMs can further select the best compromise solution by considering

the trade-off between the two effects. In this selection step, DMs’ preferences can be involved. For the

single objective scheme, DMs need to consider the weights of location and dispersion effects in a very early

phase of the MRO task when constructing the optimization model. However, DMs may lack enough domain

knowledge to properly decide the weights of the two effects. In comparison, the multi-objective scheme does
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not pre-allocate the weights for the two effects before the optimization. It simultaneously optimizes the

two effects to obtain a set of non-dominated solutions that meet the specifications. Then, DMs can select

the most desirable solution from these candidate solutions based on their preferences. The DMs can also

re-select the best compromise solution when their preferences change without building and optimizing the

model again. This shows the advantage of the multi-objective scheme. Furthermore, the multi-objective

decision methods can help in the selection of the best compromise solution. In this paper, we propose to

use IPM to select the solution closest to the defined ideal point as the best compromise solution. It is worth

noting that, in the practical use of IPM, DMs can flexibly define the ideal point based on their preferences

to obtain the final best compromise solution.

6. Evaluating the performance of the proposed NSGAII-DMS algorithm

The optimization results of the two test examples in Section 5 have shown that the constructed multi-

objective MRO model is effective. In the proposed MRO method, the constructed multi-objective MRO

model is optimized by a novel multi-objective optimization algorithm NSGAII-DMS. In this section, we

further verify the search performance of NSGAII-DMS1 with more experiments. The experimental design

and the comparison of the search results between NSGAII-DMS and benchmark multi-objective optimization

algorithms are given in Sections 6.1 and 6.2.

6.1. Experimental design

To show the effectiveness of NSGAII-DMS, four well-known multi-objective optimization algorithms

including NSGA-II (Deb et al., 2002), SPEA2 (Zitzler et al., 2001), MOEA/D (the Tchebycheff approach

version) (Zhang & Li, 2007), and DMS (Custódio et al., 2011) are used as benchmark algorithms. NSGA-II,

SPEA2, and MOEA/D are three popular MOEAs. DMS is a multi-objective optimization algorithm based

on the direct search. In NSGA-II, SPEA2, and MOEA/D, the population size and the maximum number

of generations are set as 100 and 250, which yields the same number of function evaluations as NSGAII-

DMS. The crossover probability and mutation probability are set as 0.9 and 1/n, which are the same as

NSGAII-DMS. In DMS, the same maximum number of function evaluations (i.e., 25,000) as NSGAII-DMS

is used. Moreover, as suggested by Custódio et al. (2011), the initial value of the step size parameter is

set as α0 = 1, and the step size is halved at failure iterations and is maintained at successful iterations

in DMS. Since the benchmark algorithms and NSGAII-DMS are stochastic optimization algorithms, the

experiments applying these methods to solve the CGA and synthetic MRO problems described in Section

5.1 are repeated 30 times with different running seeds. The results of the 30 experimental runs are used to

compare the performance of these methods. All these optimization algorithms are implemented in Matlab

1The source code of NSGAII-DMS is available at https://github.com/andali89/nsgaii dms.

32

https://github.com/andali89/nsgaii_dms


R2021a and the experiments are conducted on a PC with 16 GB RAM and a 3.6 GHz CPU. We adopt three

performance metrics, i.e., hypervolume (HV) (Yuan et al., 2016), the inverted generational distance (IGD)

(Li et al., 2020; Li & He, 2020), and the diversity metric (DME) (Deb et al., 2002), to evaluate the search

performance. A brief introduction of these metrics is given below.

HV measures the hypervolume dominated by the non-dominated solutions of a multi-objective optimiza-

tion algorithm in the objective space. A larger HV value denotes a better quality of the non-dominated

solutions. Let Lns be a set of non-dominated solutions and r = (r1, r2, ..., rm) be a given reference point in

the objective space. The hypervolume of Lns with respect to r is obtained as

HV (Lns) = volume

 ⋃
x∈Lns

m∏
j=1

|rj − fj(x)|

 , (39)

where fj(x) denotes the value of the jth objective function obtained by x.

IGD measures the similarity between the Pareto optimal solutions and the non-dominated solutions found

by a multi-objective optimization algorithm. The lower the IGD value is, the better the performance of the

optimization algorithm is. Let Lp be the set of Pareto optimal solutions and Lns be a set of non-dominated

solutions found by a multi-objective optimization algorithm. The IGD value of Lns with respect to Lp is

defined as

IGD(Lns) =
1

|Lp|
∑

xp∈Lp

min
x∈Lns

D(xp,x), (40)

where |Lp| denotes the number of solutions in Lp and D(xp,x) denotes the Euclidean distance between

solutions xp and x in the objective space.

DME measures the spread degree of the non-dominated solutions found by a multi-objective optimization

algorithm. A lower DME value denotes the found solutions spread more uniformly in the non-dominated

front. Let Lns be a set of non-dominated solutions. The DME value of Lns is obtained as

DME(Lns) =
df + dl +

∑|Lns|−1
i=1 |di − d̄|

df + dl + (|Lns| − 1)d̄
(41)

where |Lns| denotes the number of the solutions in Lns, d1, d2, ..., d|Lns|−1 are the Euclidean distances

between the consecutive solutions in Lns in the objective space, df and dl are the Euclidean distances

between the two extreme solutions and their neighbor solutions in the objective space, and d̄ is the average

of d1, d2, ..., d|Lns|−1.

The ranges of different objective functions can be very different. Thus, we first normalize each objective

function value based on the max-min normalization method, where the maximum and minimum values are

obtained based on the union of the solutions found by all the compared optimization algorithms. The HV,

IGD, and DME values for each algorithm are then calculated based on the normalized objective function
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values. To compute the HV value, the reference point r = (r1, r2, ..., rm) should be given. We define each

element of the reference point as rj = 1.1, j = 1, 2, ...,m as suggested by Yuan et al. (2016). To calculate

the IGD value, we need to know the true Pareto front of the problem. In this paper, we obtain the non-

dominated front based on the solutions found by all the compared methods on the 30 runs and let this

non-dominated front be the approximate Pareto front for the calculation of IGD as suggested by Li et al.

(2020). For a more detailed description of the calculation for the three metrics, please refer to Li et al.

(2020).

6.2. Comparison of the search performance

Table 6 shows the results of the three performance metrics and the computation time (CPU time)

obtained by the optimization algorithms on the two examples. In the table, the mean and standard deviation

values on each performance metric are shown for each method. Each “P-value” column shows the statistical

significance test results comparing NSGAII-DMS with a benchmark method based on the Wilcoxon rank-sum

test (Wilcoxon, 1945) with a significance level of 0.05.

Overall, for both the CGA and synthetic examples, NSGAII-DMS obtains better HV, IGD, and DME

results than the benchmark algorithms. First, NSGAII-DMS obtains a significantly higher HV value than

the benchmark algorithms in the two examples. This means that the non-dominated solutions obtained

by NSGAII-DMS dominate a larger area than the benchmark algorithms in the objective space. Second,

NSGAII-DMS obtains a significantly lower IGD value than the benchmark algorithms in the two examples.

This shows that the non-dominated front obtained by NSGAII-DMS is more similar to the Pareto front

than the benchmark algorithms. The IGD and HV results show that NSGAII-DMS obtains higher quality

solutions than the benchmark algorithms. Finally, NSGAII-DMS obtains a significantly lower DME value

than the benchmark algorithms in the two examples. This shows that the solutions obtained by NSGAII-

DMS are distributed more uniformly in the non-dominated front than the solutions obtained by benchmark

algorithms, which means that NSGAII-DMS has a better spread property than the benchmark algorithms.

Moreover, in the two examples, NSGAII-DMS requires slightly less computation time than NSGA-

II, while requiring more computation time than SPEA2, MOEA/D, and DMS. This is because the non-

dominated sorting approach used in NSGAII-DMS and NSGA-II requires more computation time than the

solution sorting approaches in SPEA2, MOEA/D, and DMS. However, seeing that NSGAII-DMS can obtain

better IGD, HV, and DME results than other algorithms and the computation time required by NSGAII-

DMS are acceptable from a practical point of view, it is a better choice to use the proposed NSGAII-DMS

instead of the benchmark algorithms.

The above results have shown that the proposed NSGAII-DMS outperforms the benchmark multi-

objective optimization algorithms. The following reasons can explain the effectiveness of NSGAII-DMS:
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Table 6: Comparison of the search performance between NSGAII-DMS and benchmark multi-objective optimization methods.

Example Metric
NSGAII-DMS NSGA-II SPEA2 MOEA/D DMS

Mean Std. Mean Std. P-value Mean Std. P-value Mean Std. P-value Mean Std. P-value

CGA

HV 1.1002 0.0001 1.0988 0.0002 0.0000∗ 1.0823 0.0087 0.0000∗ 1.0853 0.0017 0.0000∗ 1.0975 0.0005 0.0000∗

IGD 0.0048 0.0005 0.0053 0.0002 0.0001∗ 0.0285 0.0144 0.0000∗ 0.0353 0.0027 0.0000∗ 0.0081 0.0006 0.0000∗

DME 0.2393 0.0176 0.4203 0.0267 0.0000∗ 1.0691 0.0618 0.0000∗ 0.8995 0.0180 0.0000∗ 0.5994 0.0211 0.0000∗

Time (S) 37.3 2.3 53.6 0.5 0.0000∗ 18.9 0.5 0.0000∗ 20.1 0.7 0.0000∗ 18.5 0.9 0.0000∗

Synthetic

HV 1.1008 0.0000 1.0993 0.0029 0.0000∗ 1.0929 0.0023 0.0000∗ 1.0979 0.0004 0.0000∗ 1.0997 0.0001 0.0000∗

IGD 0.0052 0.0005 0.0068 0.0066 0.0000∗ 0.0216 0.0073 0.0000∗ 0.0216 0.0014 0.0000∗ 0.0054 0.0002 0.0017∗

DME 0.1864 0.0201 0.4456 0.0693 0.0000∗ 1.1039 0.0716 0.0000∗ 0.8669 0.0180 0.0000∗ 0.3504 0.0198 0.0000∗

Time (S) 34.9 2.3 53.1 0.9 0.0000∗ 17.8 0.5 0.0000∗ 20.3 1.3 0.0000∗ 15.5 0.4 0.0000∗

• First, NSGA-II is a classical MOEA with a good global search capability. Thus, adopting the NSGA-

II-based search mechanism during the early optimization stage makes NSGAII-DMS quickly find a set

of high-quality non-dominated solutions, which lays a good foundation for the following DMS process.

• Second, DMS focuses on searching in the local space around the currently found non-dominated solu-

tions and it has shown to have excellent convergence behaviors. Therefore, adopting the DMS-based

search mechanism during the late optimization stage of NSGAIII-DMS is a good strategy to further

tune the (relatively) good solutions found by the NSGA-II process.

• Finally, the DMS-based search mechanism adopted in NSGAII-DMS is not exactly the same as that in

the traditional DMS algorithm. In the DMS process of NSGAII-DMS, the crowding distance measure

is also used to guide selecting the poll center and rejecting superfluous solutions if the non-dominated

set Lns exceeds the maximum size. Since the crowding distance can effectively measure the crowding

degree of each solution in the non-dominated front, the non-dominated solutions with a good spread

property can be maintained by NSGAII-DMS.

7. Conclusions

In this paper, we propose a robust MRO method using a hybrid multi-objective optimization algorithm,

i.e., NSGAII-DMS. Compared with the traditional single objective optimization based MRO methods, the

proposed method can find a set of non-dominated solutions instead of one single solution. DMs can select

the best compromise solution from the non-dominated solutions based on their preferences. The proposed

method considers both the location and dispersion effects of multiple responses while considering model

uncertainty. Based on the idea of the robust desirability function (He et al., 2012) that can address model

uncertainty, we form two overall desirability functions to model the location and dispersion effects, respec-

tively. Then, we construct the MRO model as a multi-objective optimization problem that simultaneously

optimizes the two modeled overall desirability functions. To solve the model, we propose the NSGAII-

DMS algorithm that combines the search mechanisms of NSGA-II and DMS. The optimization results of

the two test examples show that the proposed model can obtain robust solutions with desirable location

and dispersion effects results while ensuring the solutions’ reliability by addressing model uncertainty. The
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optimization results also show that IPM can be a good tool to help DMs select the best compromise so-

lution from the non-dominated solutions found by NSGAII-DMS, as IPM can find a solution with a good

balance between the location and dispersion effects. Further analyses illustrate that the NSGAII-DMS al-

gorithm shows significantly better search performance than several well-known multi-objective optimization

algorithms, including NSGA-II, SPEA2, MOEA/D, and DMS.

The proposed MRO model defines the location and dispersion effects as two optimization objectives.

One advantage of this formulation is that DMs can further select the best compromise solution from the

obtained non-dominated solutions considering the trade-off between the two effects. This formulation also

has a good scalability property, since the increase in the number of responses does not change the form of

the optimization model. However, the drawback of this formulation is that the trade-offs among multiple

responses cannot be straightforwardly considered by the DMs when selecting the best compromise solution.

Thus, one of our future research interests is to establish an MRO method that can provide DMs with

more flexibility to consider the trade-offs among multiple responses for decision making. Moreover, being

one desirability function based MRO method, the proposed method does not consider the correlations

among responses. Hence, building a multi-objective optimization based MRO method that can handle the

correlations among multiple responses is also worth studying in the future.
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Appendix A. Tuning parameters for NSGAII-DMS

As we analyzed in Section 5.2, three parameters, including the maximum number of generations of

the GA process T , the initial step size parameter α0, and the parameter β, are required to be tuned for

NSGAII-DMS. Therefore, in this section, we conduct the tuning experiments to find a desirable setting for

the three parameters. In the experiments, we examine four values of T (i.e., T ∈ {50, 100, 150, 200}), examine

five values of α0 (i.e., α0 ∈ {0.2, 0.4, ..., 1}), and examine nine values of β (i.e., β ∈ {0.50, 0.55, ..., 0.90}).

This results in a set {(T, α0, β)|T ∈ {50, 100, 150, 200}, α0 ∈ {0.2, 0.4, ..., 1}, β ∈ {0.5, 0.55, ..., 0.90}} of 180

candidate parameter settings. The details of these parameter settings are shown in Table A.1.

In the experiments, we apply NSGAII-DMS with each parameter setting shown in Table A.1 to the

CGA example to tune the parameters. The experiment runs 10 times for each parameter setting, which

results in 10 sets of the non-dominated solutions. To evaluate the goodness of the obtained non-dominated
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Table A.1: Parameter settings to be examined in the tuning experiments.

ID T α0 β
1 50 0.2 0.50
2 50 0.2 0.55

· · ·
9 50 0.2 0.90
10 50 0.4 0.50
11 50 0.4 0.55

· · ·
45 50 1 0.90
46 100 0.2 0.50
47 100 0.2 0.55

· · ·
180 200 1 0.90

solutions, the HV metric described in Section 6.1 is adopted. We can obtain 10 HV values for the 10 sets of

non-dominated solutions. Considering both the mean and variance of the obtained HV values, we further

transform the 10 HV values into Taguchi’s signal-to-noise (S/N) ratio as suggested by Sadeghi et al. (2011).

The S/N ratio is used as the final performance metric to evaluate the goodness of the solutions from each

parameter setting. Since the HV metric is larger the better, the following formula is adopted to calculate

the S/N ratio:

S/N ratio = −10 log

(
1

10

10∑
r=1

(
1

HVr
)2
)

(A.1)

where HVr denotes the HV value of the rth experimental run. A large S/N ratio usually denotes a high

mean value and a small variance of the HV metric, which means the parameter setting obtains good search

performance.

Fig. A.1 shows the S/N ratios of the parameter settings shown in Table A.1. According to the figure, the

best S/N ratio is achieved when the 62th parameter setting (i.e., T = 100, α0 = 0.4, β = 0.85) is adopted.

According to the tuning results of these parameters, the maximum number of generations of the GA process

is set as T = 100, neither a too large nor a too small value. This indicates T should be set as a proper value

to make both the GA process and the DMS process conduct enough iterations. Moreover, compared with

the original DMS algorithm, which set α0 = 1 and β = 0.5, the tuning results indicate that NSGAII-DMS

should use a smaller α0 (i.e., 0.4) and a larger β (i.e. 0.85). This indicates that the initial search step is

smaller and the step size reduces slower in the DMS process of NSGAII-DMS than in the original DMS

algorithm. This is because we have already used the NSGA-II process for the global search in the early

optimization stage of NSGAII-DMS. It would be good to set α0 as a relatively small value to make the DMS

focus on the local search. Moreover, a slightly large β (i.e., 0.85) also guarantees the search step does not

shrink too fast.
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Figure A.1: The S/N ratios of different parameter settings.
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