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Abstract

In this paper, a feature selection (FS) method is proposed to identify key quality features (KQFs) in

complex manufacturing processes. We propose a multi-objective binary particle swarm optimization algo-

rithm, called MPBPSO, with three new components to optimize a bi-objective FS model of maximizing the

geometric mean (GM) measure and minimizing the number of selected features. First, MPBPSO uses a

modified probability-based solution update (PSU) mechanism which utilizes a flipping vector to update par-

ticles. A mutation operator with three basic operations, i.e., add, eliminate, and interchange, is also utilized

in MPBPSO to improve the exploration performance. Second, a strategy combining the Pareto dominance

concept with a distance measure is proposed for MPBPSO to update pbest (personal best position). Finally,

a selection strategy based on the roulette wheel selection is proposed to determine the gbest (global best

position) from the non-dominated set during iterations. The experimental results on four datasets have

shown that the proposed FS method can identify a small number of KQFs that have good predictive ability

for product quality. Further analysis indicates that MPBPSO obtains better search performance than eight

benchmark optimization algorithms and the new components in MPBPSO are effective for improving its

search performance.

Keywords: Particle swarm optimization, feature selection, multi-objective optimization, classification,

quality control

1. Introduction

The complex manufacturing processes of modern industries generally contain numerous quality features

(QFs) including part characteristics and process variables [21]. Identifying key QFs (KQFs) that significantly
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affect product quality can reduce the difficulty of applying quality control and improvement tools in complex

manufacturing processes [19]. KQF identification can also improve the effectiveness and efficiency of quality5

prediction models [2], which is essential for accurately and timely adjusting the manufacturing processes to

control process quality [29]. For example, the manufacturing process of a high-precision laser gyroscope of

one company in China contains several stages. First, an optical cavity with qualified holes is manufactured

based on the perforating operations. Second, an intermediate laser gyroscope is manufactured by assembling

optical components in the cavity so that the laser gyroscope can generate qualified light sources. Finally,10

the final laser gyroscope is manufactured by further assembling electronic components in the intermediate

laser gyroscope. A large number of QFs including performance/dimensional features of parts (i.e., part

characteristics) and process parameters (e.g., the temperatures, air pressures, and voltages) at the three

manufacturing stages are the potential factors affecting the quality of the final laser gyroscope. Due to

the complexity of the laser gyroscope and its manufacturing process, there are complicated relationships15

between QFs in the manufacturing process and the final product quality. Identifying the KQFs strongly

related to the final product quality is essential for effectively controlling the quality of laser gyroscopes. The

wide application of Internet of Things (IoT) technologies to industries in recent years substantially simplifies

the processes of data collection, data integration, and storage, which lays a foundation for the data-driven

quality engineering techniques [43]. It is required to propose an effective KQF identification method based20

on the high dimensional manufacturing process data with numerous QFs.

Feature selection (FS) is a widely used technique for reducing data dimensionality by selecting the most

critical features (variables) related to the class label (or response variable) to build an effective and compact

machine learning model [9, 42]. In recent years, many FS-based KQF identification methods have been

proposed due to their effectiveness in dealing with high dimensional data [2, 13, 19, 20, 21]. For example,25

Anzanello et al. [2] proposed an FS method that first uses a partial least squares regression based measure

to rank features and then uses a multicriteria decision method to select the most important features for

product quality prediction. Li et al. [20] proposed an FS method that uses an improved direct multi-

search (IDMS) algorithm to search for the best feature subset with competent prediction ability for product

quality. In these FS-based KQF identification applications, the QFs and product quality (e.g., conforming30

or nonconforming) are treated as the features and the class label in classification tasks. Similar to [20], we

address the KQF identification problem based on the manufacturing process data of two discrete quality

levels, which is related to a classification task in machine learning.

From the perspective of feature evaluation, FS methods can be categorized into the filter and wrapper

approaches. The filters generally use a measure based on distance, information theory, or statistical theory35

to evaluate the importance of a feature or feature subset [44]. The wrappers introduce a learning model in

the feature importance evaluation process where a classification performance measure is used to evaluate

a feature subset [17]. Since the performance of a learning model is directly used to evaluate the feature
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importance, wrappers can generally select features with better classification performance than that of the

filters.40

The manufacturing process data are unbalanced because the number of instances (products) of differ-

ent classes (quality levels) differs substantially. It is usually seen that the manufactured regular quality

products (majority class instances) are substantially more than the premium quality products (minority

class instances), or the conforming products are substantially more than nonconforming products. Most

FS methods [26, 32, 36, 39, 40] in literature adopt accuracy to measure the classification performance or45

the quality of a feature subset. However, accuracy without considering the data imbalance issue may not

be an effective classification measure for the unbalanced data, and thus it can lead to a biased FS (KQF

identification) result. To solve this problem, an FS model constructed as maximizing the geometric mean

(GM) of the true positive rate (TPR) and true negative rate (TNR) and minimizing the number of selected

features was proposed in [20] for KQF identification. Different from accuracy, GM is sensitive to both the50

minority and majority class instances, so that it is a desirable feature importance measure for unbalanced

data.

From the perspective of optimization, a wrapper approach often models FS as a multi-objective optimiza-

tion problem (MOP) of maximizing the classification performance and minimizing the number of selected

features. This problem has shown to be an NP-hard problem that has a very large solution space when55

there are a large number of original features [1]. Various heuristic search algorithms, such as sequential

forward selection (SFS) [17] and sequential backward selection (SBS) [17] have been applied to solve such an

optimization problem. Moreover, evolutionary algorithms (EAs), such as genetic algorithms (GAs) [13, 23],

differential evolution (DE) [8, 36], and particle swarm optimization (PSO) algorithms [32, 48], have been

widely applied to FS due to their superior search performance. The single objective EAs can solve the60

multi-objective FS problem by aggregating the two objectives into one objective, which needs substantial

domain knowledge to determine how to aggregate.

Compared with single objective EAs, multi-objective EAs (MOEAs) can solve a multi-objective FS prob-

lem more straightforwardly as they can simultaneously handle multiple objectives during the optimization

process [39]. In MOEAs, the Pareto dominance concept is generally used to determine the quality of solu-65

tions. A solution a is said to dominate another solution b if 1) all the objective function values of a are not

worse than that of b and 2) a is better than b on at least one objective function. The solutions that are not

dominated by any other solution are said to be the non-dominated solutions, which are the output of the

MOEAs. In recent years, many MOEAs including multi-objective GAs and multi-objective DE algorithms

have been applied to FS. For example, Li et al. [21] proposed a hybrid algorithm that combines a GA with70

the direct multi-search (DMS) algorithm, where DMS aims to locally update the non-dominated solutions

during the optimization process. The proposed approach has been shown to obtain good performance for

KQF identification. Zhang et al. [47] proposed a multi-objective binary DE algorithm called MOFS-BDE
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for FS. This algorithm applied a local search step called one-bit purifying to periodically update the non-

dominated solutions evolved by the DE procedure. Although the aforementioned GA and DE algorithms75

applied different strategies to improve their search performance for solving FS problems, the convergence

speeds of these EAs are still limited especially for FS in high-dimensional data with a large number of

features. Except for GA and DE, PSO [15] is also one of the most popular EAs. PSO updates each particle

(solutions) based on its own best experience (i.e., personnel best position, pbest) and the best experience of

the swarm (i.e., global best position, gbest). The application of gbest substantially increases the convergence80

speed of PSO, making it a desirable optimization approach for FS (KQF identification) in high dimensional

data. The multi-objective PSO algorithms [39, 25, 11] have been widely studied for FS problems in recent

years. However, these studies have applied continuous PSO (CPSO) algorithms which are designed to search

in a continuous decision space. A binary multi-objective PSO algorithm for more effective optimization of

the FS problem is worth studying seeing that FS is a combinatorial optimization problem.85

Recently, a binary PSO (BPSO) algorithm called probability BPSO (PBPSO) [40] that adopts a probability-

based solution update (PSU) mechanism was proposed for FS. It has been shown to obtain competitive

search performance for FS problems. The PSU mechanism maintains the basic concept of PSO. It generates

a probability vector based on the difference between pbest and gbest, and then uses this vector to decide the

flipping probability for each element/bit in the position. A constant p0 is also used when calculating the90

probability vector. It causes an effect to randomly flip the elements in the particle position to enhance the

exploration performance of PBPSO. However, the random search behavior caused by p0 yields a negative

effect that prevents the reduction of features during the late phase of the optimization (see Section 3.3.1 for

details). This motivates us to design an improved PSU mechanism by considering the unique characteristics

of FS, based on which we will then build a multi-objective PBPSO for FS. In many existing multi-objective95

PSO algorithms, the Pareto dominance concept is used to determine the update of pbest [25, 39] during the

iterations. However, different from that in the single objective scenario, there is a much higher probability

that the current position and pbest of a particle do not dominate each other in the multi-objective scenario,

which can substantially reduce the frequency of updating pbest. This motivates us to build a more effective

pbset update strategy for building a multi-objective PBPSO algorithm in this paper.100

In this paper, we propose a wrapper-based FS method by developing a multi-objective PSO algorithm for

identifying KQFs in complex manufacturing processes that have good predictive ability for product quality.

The proposed FS method is referred to as MPBPSO-IPM, which is composed of two phases. In the first

phase, a multi-objective PBPSO algorithm, called MPBPSO, is proposed to solve the KQF identification

(FS) model [20] for unbalanced data to obtain a set of non-dominated solutions (QF subsets). A modified105

non-dominated sorting strategy [19] that can handle the duplicate solutions in the swarm is used in MPBPSO

to sort the solutions and find the non-dominated solutions during iterations. In the second phase, the ideal

point method (IPM) [19] is adopted to select the best compromise solution (KQF set) from the solutions
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found by MPBPSO. The contributions of the proposed FS method are summarized as follows:

• We propose a modified PSU mechanism for MPBPSO to update particle positions during the evolu-110

tionary process. The modified PSU mechanism discards the random flipping term p0 in the standard

PSU mechanism of PBPSO [40]. To maintain the exploration performance of MPBPSO, a mutation

operator considering the characteristics of FS is adopted to further update particles after the modified

PSU mechanism. The proposed mutation operator adopts three basic operations, i.e., add, eliminate,

and interchange, to update a feature subset (solution) with the same probability. The proposed mu-115

tation operator does not change the expected number of selected features in a particle so that the

drawback of p0 in the standard PSU mechanism that prevents the reduction of features during the

late phase of the evolutionary process can be avoided.

• We propose a distance-based pbest update (DPU) strategy that combines the Pareto dominance con-

cept with a distance measure to update pbest in MPBPSO. Specifically, the distance to the non-120

dominated front is used as the measure to determine the update of pbest when the current position

and pbest do not dominate each other. Compared with the Pareto dominance concept used in exist-

ing multi-objective PSO algorithms [25, 39], the designed DPU strategy can determine the goodness

of pbest and the current position in the case that they do not dominate each other. Therefore, the

pbest can be updated more frequently and reasonably, which improves the search performance of the125

proposed MPBPSO algorithm.

• We propose a roulette wheel selection based gbest selection (RWGS) strategy in MPBPSO. This strat-

egy guarantees that non-dominated solutions are uniformly selected as gbest. So, similar computation

resources are allocated to different regions of the non-dominated front.

We verify the effectiveness of the proposed FS method MPBPSO-IPM on four unbalanced manufacturing130

process datasets. The experimental results show that MPBPSO-IPM outperforms eight benchmark FS

methods in identifying KQFs. Further analysis verifies the effectiveness of the unique components added in

MPBPSO, including the solution update mechanism, the DPU strategy, and the RWGS strategy. Moreover,

the overall search performance of MPBPSO is verified by comparing MPBPSO with eight well-known multi-

objective optimization algorithms.135

The rest of this paper is organized as follows. Section 2 presents the background and related work,

including the KQF identification (FS) model, IPM, PBPSO, and literature review. Section 3 presents the

proposed multi-objective optimization algorithm MPBPSO. Section 4 describes the experimental design.

Section 5 presents and analyzes the KQF identification results. Section 6 evaluates the search performance

of MPBPSO. Section 7 presents conclusions and future research interests.140
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2. Background and related work

2.1. The multi-objective KQF identification (FS) model

Let D = {(ei, yi)} (i ∈ {1, 2, ...,M}, ei ∈ RN , yi ∈ {−1, 1}) be a dataset of M products (i.e., instances)

and N QFs (i.e., features) collected from a complex manufacturing process, F = {f1, f2, ..., fN} be the set

of original QFs, ei = (ei,1, ei,2, ..., ei,N ) be the observations of the N QFs, and yi ∈ {−1,+1} be the quality145

level of product i, where +1 and −1 denote the minority class (e.g., premium quality) and majority class

(e.g., regular quality), respectively. Then, KQF identification can be described as an FS problem that aims

to select a QF subset (i.e., feature subset) X ⊆ F that has a competent predictive ability for product quality.

In [20], a KQF identification (i.e., FS) model considering the imbalance problem of the manufacturing

process data was proposed. This model is defined as a multi-objective optimization problem of maximizing

GM and minimizing the number of selected QFs, and it can be described as

min F = {1−GM(X), |X|}

s.t. X ⊆ F,X 6= ∅
(1)

where GM(X) denotes the GM value obtained by X, and |X| denotes the number of QFs selected by X. In

Eq. (1), the first objective aims to maximize the classification performance of the selected QFs. The second150

objective aims to reduce the number of selected QFs, which can promote the KQF identification method to

reduce as many irrelevant and redundant QFs as possible.

This KQF identification model uses GM as the measure to evaluate feature importance. The GM measure

is defined as the geometric mean of TPR and TNR, i.e.,

GM =
√
TPR ∗ TNR (2)

where

TPN =
TP

TP + FN
, (3)

TNR =
TN

TN + FP
. (4)

In Eqs. (3) and (4), TP , TN , FP , and FN denote the number of true positives, true negatives, false

positives, and false negatives respectively in the binary classification scenario. GM is a suitable measure

for unbalanced data because a high GM value requires both high TPR and TNR values, which reflects155

the classification performance of the minority and majority classes, respectively. In comparison, a good

classification result for the majority class only is enough to yield a high accuracy rate when the data is

unbalanced. So, accuracy may bias evaluate the classification performance, especially for the minority class.
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But in fact, the minority class is often the key issue [3]. For example, in the manufacturing processes,

the minority defective/premium (i.e., minority class) products gain much more attention than the majority160

regular products for quality control purposes. The performance of GM for KQF identification on unbalanced

data was justified in [21]. In this study, the performance of GM for building a KQF identification model

was compared with accuracy and the F1 score (for the minority class). The experimental results have shown

that GM is the most effective measure for KQF identification on unbalanced manufacturing process data.

Therefore, in this paper, we adopt GM to build the KQF identification model as shown in Eq. (1).165

2.2. Ideal point method (IPM)

The KQF identification model shown in Eq. (1) defines a MOP. MOEAs can be used to optimize the

defined MOP without further converting it into a single objective optimization problem, and a set of non-

dominated solutions will be obtained. From a practical point of view, further selecting the best compromise

solution from these non-dominated solutions is required. The ideal point method (IPM) [19], a widely used170

multi-objective decision method, can be used to achieve such a goal. In IPM, an ideal point (solution) in

the objective space is first defined. Then, the solution closest to the ideal point is selected as the best

compromise solution. In this paper, we apply IPM to select the final KQF set from the non-dominated

solutions obtained by the proposed MPBPSO algorithm.

Let Ω be the non-dominated set found by a multi-objective optimization algorithm, m be the number of175

objective functions, and fi(X), (i = 1, ...,m, X ∈ Ω) be the ith objective function. The procedure of IPM

can be illustrated as the following three steps:

1. The objective function values for each X ∈ Ω is normalized by the Z-score normalization method as

fni (X) = (fi(X)− fi)/σ(fi), (5)

where fi and σ(fi) denotes the mean and standard deviation of the ith objective function calculated

by the solutions in Ω.

2. The ideal point is defined based on the normalized objective function values as

[f∗1 , ..., f
∗
m] = [minx∈Ω(fn1 (X)), ...,minx∈Ω(fnm(X)]. (6)

3. The best compromise solution X∗ is obtained as

X∗ = arg min
x∈Ω

√√√√ m∑
i=1

(fni (X)− f∗i )2, (7)
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which means the solution in Ω with the lowest Euclidean distance to the ideal point is selected as the180

best compromise solution.

2.3. Probability BPSO (PBPSO)

In [40] a BPSO algorithm called PBPSO was proposed for FS. PBPSO maintains the basic search

concept of PSO that particles are updated based on pbest and gbest. The difference between PBPSO and

the standard BPSO [15] is that PBPSO adopts a PSU mechanism that uses a flipping probability vector185

instead of velocity to update particles. This vector reflects the flipping probability for each element in the

particle position.

Let Xt
i = (xti,1, x

t
i,2, ..., x

t
i,N ) (xti,j ∈ {0, 1}, j = 1, 2, ..., N) be the position of a particle in the swarm at

the tth iteration. In PBPSO, a probability vector Pi = (pi,1, pi,2, .., pi,N ) updates each xti,j (j = 1, 2, ..., N)

in Xt
i as

xt+1
i,j =

1− xi,j , if r < pi,j

xti,j , otherwise

(8)

where r denotes a random value from the uniform distribution U(0, 1). The probability vector Pi is calculated

at each iteration and each element pi,j (j = 1, 2, ..., N) in Pi is obtained by

pi,j = p0 + ppi,j + pgi,j . (9)

In Eq. (9), ppi,j and pgi,j are obtained by comparing xti,j with pbest and gbest. They are defined as

ppi,j = |xti,j − pbesti,j | · p1, (10)

pgi,j = |xti,j − gbestj | · p2, (11)

where pbesti,j and gbestj denote the jth element of pbest and gbest. According to Eqs. (10) and (11), ppi,j

and pgi,j are set as p1 and p2 if the current particle position xti,j is different from pbest and gbest, otherwise,

they are set as 0. Since, as shown in Eq. (9), ppi,j and pgi,j contribute to the flipping probability pi,j , they190

reflect the influence of pbest and gbest on the change of the particle position. Except for ppi,j and pgi,j , p0 is

also used for calculating the final value of pi,j . This means that, an element in the particle position still has

a small probability of p0 to flip when both ppi,j and pgi,j equal 0. Thus, p0 reflects the strength of random

search in PBPSO. In PBPSO, p0, p1, and p2 are three user-defined parameters and the sum of these three

parameters is defined as 1, which guarantees the flipping probability pi,j does not exceed 1.195
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2.4. Related work on evolutionary FS methods

FS is an optimization problem with 2N − 1 possible feature subsets (solutions) given a dataset with

N original features. Due to superior search capabilities, MOEAs have been increasingly applied to FS in

order to find a feature subset with both good classification performance and a small size [42]. Li et al.

[19] proposed a modified non-dominated sorting algorithm II (NSGA-II) to build an FS method for KQF200

identification. The proposed modified NSGA-II algorithm adopts a strategy in the non-dominated sorting

process to handle redundant solutions in the population to improve population diversity, which improves

the search performance of NSGA-II in solving FS problems. Wang et al. [35] proposed a multi-objective

DE algorithm that simultaneously selects features and optimizes the structure of the extreme learning

machines. With this algorithm, an ensemble learning algorithm is established for predicting silicon content205

in hot metal. Wang et al. [36] proposed a multi-objective DE algorithm that adopts a niching and global

interaction mutation operator for generating diversified and high-quality solutions (feature subsets) during

the iterations. A repairing mechanism that can reduce redundant solutions in the population is proposed

to increase FS performance. Except for GAs and DE, PSO is one popular EA widely used in various

optimization tasks. For its simplicity, high convergence speed, and good global search performance, PSO-210

based FS methods have been extensively studied in recent years. Specifically, many multi-objective PSO

algorithms have been widely applied to FS in order to maximize classification performance and minimize

the size of feature subsets simultaneously. Xue et al. [39] applied two multi-objective PSO algorithms to

build FS methods, CMDPSOFS and NSPSOFS. CMDPSOFS is based on the CMDPSO algorithm which

adopts the ideas of crowding, mutation, and dominance for multi-objective optimization. NSPSOFS is based215

on the NSPSO algorithm which adopts the idea of non-dominated sorting for multi-objective optimization.

Nguyen et al. [25] proposed a multi-objective PSO algorithm called ISRPSO, which adopts a local search

process to polish the non-dominated solutions obtained at each iteration. Han et al. [11] proposed a

multi-objective PSO algorithm that adopts a penalty mechanism for archive preservation based on penalty

boundary interaction (PBI) decomposition and an adaptive leading particle selection approach using feature220

information to improve the optimization performance for FS. These multi-objective FS methods are based

on CPSO algorithms where the decision variables (i.e., particles) to be optimized are continuous. Therefore,

each element in a particle is continuous and should be compared to a predefined threshold parameter to

determine if the corresponding feature is selected (e.g., larger than the threshold) or not (e.g., smaller than

or equal to the threshold) [24, 41]. Building a multi-objective BPSO algorithm that can effectively search in225

the discrete decision space of FS problems is required to be further studied. Moreover, the PSO algorithms

proposed in [25] and [39] have adopted the Pareto dominance concept to update pbest. However, when

a new particle position and pbest are not dominated by each other, the Pareto dominance concept loses

efficacy in determining the goodness of the two positions. Although the PSO algorithm in [11] adopts the

PBI approach to transform the values of multiple objective functions of a particle into a scalar value, which230

9



is used to determine the update of pbset. However, the PBI approach requires a user-defined parameter to

guarantee its performance, which requires extensive efforts for parameter tuning.

Data imbalance is also a problem faced in many machine learning tasks [3, 28]. In a classification task,

a dataset is unbalanced when the number of instances belonging to different classes substantially differs.

For example, in the product quality prediction scenario, the number of products of different quality levels235

is substantially different. Most wrapper-based FS methods adopt accuracy as a measure to evaluate feature

importance. However, accuracy is not a good classification performance measure for unbalanced data, since

its value is mainly decided by the majority class instances. The classification performance for the minority

class cannot be well measured by accuracy on unbalanced data. To tackle this problem, many studies have

adopted other classification performance measures, such as TPR and TNR (or type I and type II errors) [27],240

recall and precision [6], and Jaccard index [49], instead of accuracy for FS. However, adopting the above-

mentioned measures, such as TPR and TNR, for unbalanced data instead of accuracy means one additional

optimization objective is involved. The increase in the number of objectives affects the performance of an

MOEA [12]. To cope with this problem, some studies adopted an aggregated classification measure (e.g.,

expected maximum profit (EMP) [18], and GM [20]) instead of TPR and TNR, recall and precision, etc., for245

feature subset evaluation in FS. For example, Kozodoi et al. [18] proposed a multi-objective FS approach

that maximizes the EMP measure and minimizes the number of selected features for credit scoring. The

EMP measure is defined by considering the profit and cost for correctly and incorrectly classifying instances.

Zhang et al. [48] proposed a clustering guided PSO algorithm for FS. In this method, a modified F-measure

combining the filling risk of missing values, precision, and recall was proposed to tackle the FS problem250

on unbalanced data with missing values. Li et al. [20, 21] adopted an FS model that maximizes GM

and minimizes the number of selected features for KQF identification on unbalanced manufacturing process

data. The experimental results have shown that the GM measure can effectively handle the unbalanced

manufacturing process data for a KQF identification objective.

FS is naturally a combinatorial optimization problem, i.e., searching for different combinations of features255

in order to obtain the optimal feature subset. In an FS problem, a discrete variable can represent whether

a feature is selected (e.g., using 1) or not (e.g., using 0). Therefore, it is more straightforward to represent

a feature subset in BPSO than CPSO for an FS problem. The standard BPSO algorithm proposed in [15]

uses a sigmoid function to transform the velocity to a real value in [0, 1] which is the probability to set an

element in the particle position as 1. However, as mentioned in [16], by introducing the sigmoid function in260

BPSO, the velocity of each particle shows an opposite effect compared with that in CPSO. That is, a small

velocity value in BPSO promotes exploration while a large velocity value in CPSO promotes exploration.

This effect limits the search performance of standard BPSO. Recently, Xue et al. [40] proposed a BPSO

variant called PBPSO, which updates the position of a particle based on the probability vector generated

by the PSU mechanism without using the sigmoid function. Later, Nguyen et al. [26] proposed a modified265
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PBPSO called sticky BPSO (SBPSO) which introduces a stickiness parameter in PBPSO. The stickiness

parameter is used in SBPSO to mimic the momentum property of CPSO. Moreover, Li et al. [22] proposed

a BPSO-based FS method based on the PSU mechanism used in SBPSO. This method adopts a mutual-

information-based swarm initialization strategy and a bits-masking-based search space reduction strategy,

which substantially increase the FS performance on high dimensional data.270

Existing studies [22, 26, 40] have shown the effectiveness of the PSU mechanism in PBPSO for FS.

However, these methods are all proposed for the single objective FS models. Therefore, proposing a multi-

objective PBPSO algorithm for FS is worth studying. Several issues should be addressed when building a

multi-objective PBPSO algorithm. First, the constant p0 in PSU that reflects a random flipping probability

for elements in a particle can weaken the feature reduction performance during the late optimization phase275

for FS problems (see Section 3.3.1 for details). Second, an effective strategy is required in the multi-

objective PBPSO to properly update pbest considering that two solutions are more difficult to be compared

in the multi-objective scenario than that in the single-objective scenario as they may be not dominated by

each other. Therefore, in Section 3, we propose a multi-objective PBPSO called MPBPSO, which utilizes

a modified PSU mechanism and a distance-based pbest update strategy to address the above-mentioned280

issues.

3. The proposed approach

In this section, we propose a multi-objective FS method called MPBPSO-IPM for KQF identification.

MPBPSO-IPM first adopts MPBPSO to select a set of candidate feature subsets (i.e., QF subsets), and

then, utilizes IPM (please refer to Section 2.2) to select the final feature subset (i.e., KQF set) from the285

candidate feature subsets. The overall procedure of MPBPSO and its main components are introduced

below.

3.1. Overall procedure of MPBPSO

To solve the multi-objective KQF identification model defined in Eq. (1), we propose the MPBPSO

algorithm which is established by extending PBPSO [40] to the multi-objective scenario. MPBPSO inherits290

the main concept of PBPSO that utilizes a probability vector obtained from the particle position, pbest,

and gbest for solution update. However, different from PBPSO, the p0 term in Eq. (9) that yields the

random flipping behavior for particle positions is discarded in MPBPSO. Instead, a mutation operator with

three basic operations (add, eliminate, and interchange) is adopted in MPBPSO. Moreover, we propose the

DPU strategy which combines the Pareto dominance concept and a distance measure to update pbest. It295

can effectively determine the update of pbest in the case that the new particle position and pbest are not

dominated by each other. In the multi-objective scenario, all the solutions in the non-dominated set can
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be a candidate for the gbest. Therefore, we further propose the RWGS strategy to determine the gbest at

each iteration. Compared with selecting the gbest randomly, this strategy guarantees the non-dominated

solutions are uniformly selected as the gbest, which is beneficial for uniformly allocating computational300

resources to different regions of the non-dominated front.

Algorithm 1 shows the overall procedure of MPBPSO. First, the algorithm initializes a set S0 of particles,

from which the non-dominated solutions are obtained and added to the set Ω. Then, the gbest determined

by the RWGS strategy is used by the modified PSU mechanism to update the position of each particle from

Xi to Xp
i . Next, the mutation operator is used to update Xp

i to Xm
i . After the positions of all particles are305

updated, we obtain an intermediate swarm S ′
containing the updated positions and pbests of particles. Next,

similar to NSGA-II [5], the best K particles in the union Su of the parent swarm St and intermediate swarm

S ′
are kept for the next iteration. Specifically, the particles in Su are sorted (see Section 3.6) according to

the objective function values of their current positions to determine the best K particles, which are added to

the new swarm St+1. After that, the pbest of each particle in St+1 is updated with the DPU strategy, and310

the algorithm moves to the next iteration. Finally, we output the non-dominated set Ω when the algorithm

reaches the termination criteria.

3.2. Solution representation

In MPBPSO, the position Xi = (xi,1, xi,2, ..., xi,N ) of the ith particle is defined as a vector of N elements,

where N is the number of original features (QFs). Each element xi,j ∈ {0, 1}, j = 1, 2, ..., N denotes if the315

jth feature is selected (xi,j = 1) or eliminated (xi,j = 0) by Xi.

3.3. Proposed solution update mechanism

3.3.1. Limitation of the standard probability-based solution update (PSU) mechanism

Each element pi,j in the probability vector Pi defined in Eq. (9) reflects the flipping probability of each

element in a particle position. It is composed of three parts, i.e., p0, ppi,j , and pgi,j , reflecting the strengths of320

random search, moving towards pbest, and moving towards gbest, respectively. In PBPSO [40], p0 is defined

as a small constant that contributes to the flipping probability of each element in the particle position.

Thus, p0 has a similar effect to the mutation operator in GAs.

However, the p0 term in Eq. (9) may limit the PSO algorithm’s performance for effectively eliminating

features for an FS problem, which contradicts the main objective of FS, i.e., selecting a small number of325

key features. Let Xt
i = (xti,1, x

t
i,2, ..., x

t
i,N ) (xti,j ∈ {0, 1}, j = 1, 2, ..., N) be a particle in the swarm at

the tth iteration, Γ = {j|xti,j = 1, j = 1, 2, ..., N} be the set of indexes for the elements of 1 in Xt
i, and

Θ = {j|xti,j = 0, j = 1, 2, ..., N} be the set of indexes for the elements of 0 in Xt
i. The p0 term denotes the

flipping probability for each element in Xt
i. Thus, the expected number of elements changing from 1 to 0

is #r = |Γ| ∗ p0, and the expected number of elements changing from 0 to 1 is #a = |Θ| ∗ p0, where | |330
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Algorithm 1: Algorithmic procedure of MPBPSO.

Input: Swarm size K, maximum number of iterations T , learning rate pl, mutation rate pm;
Output: The non-dominated set Ω;

1 Ω← ∅, t← 0 ; /* Initialize the non-dominated set Ω and iteration counter t */

2 S0 ← {(X0
1, pbest1), ..., (X0

K , pbestK)} ; /* Initialize a swarm of K particles. X0
i

(i ∈ {1, 2, ...,K}) is the position (solution) of the ith particle and pbesti is its

personal best position. */

3 Evaluate the objective function values for each particle in S0 with Eq. (1);
4 Ω← Find the non-dominated particle positions (solutions) from {X1,X2, ...,XK} obtained from

swarm S0;
/* Begin iterations. */

5 while t < T do

6 S ′ ← St;
7 gbest← Select a solution from Ω using the roulette wheel selection based gbest selection (RWGS)

strategy (see Section 3.5);
8 for each Xt

i ∈ St do
/* Update the position with the modified PSU mechanism (see Section 3.3.2).

*/

9 Pi ← Obtain the probability vector based on pl, Xt
i, pbest, and gbest with Eq. (12);

10 Xp
i ← Update Xt

i with Pi using Eq. (13);
/* Update the position with the proposed mutation operator (see Section

3.3.3). */

11 if rand() < pm then
12 Xm

i ← Perform the mutation operation on Xp
i using Eq. (14) ;

13 end
14 Evaluate the objective function values of Xm

i with Eq. (1);

15 end

16 Su ← St ∪ S ′
;

17 Su ← Sort particles in Su according to the goodness of particle positions in descending order
(see Section 3.6);

18 St+1 ← The first K particles in Su;
19 Ω← The non-dominated particle positions in Su;
20 Update the pbest of each particle in St+1 with the distance-based pbest update (DPU) strategy

(see Section 3.4);
21 t← t+ 1;

22 end
23 return The non-dominated set Ω;

denotes the number of elements in a set. This means that, if the particle contains more elements of 0 than

that of 1 (i.e., |Θ| > |Γ|), it is expected that the number of features selected by this particle will increase

(i.e., #r < #a) by applying the flipping operation caused by p0. So, p0 causes an effect that prevents the

elimination of features, which is not beneficial for feature reduction. To cope with the above-mentioned issue

of p0, we propose a solution update mechanism combining a modified PSU mechanism with a new mutation335

operator for MPBPSO, which is introduced below.
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3.3.2. The modified PSU mechanism

In the modified PSU mechanism, we discard the p0 term in Eq. (9) to obtain the flipping probability

vector. Let Xt
i = (xti,1, x

t
i,2, ..., x

t
i,N ) be the position of a particle in the swarm at the tth iteration, and

pbesti be the pbest of this particle. The flipping probability Pi = (pi,1, pi,2, ..., pi,N ) can be obtained via

comparing Xi with pbesti and gbest. Specifically, each pi,j (j = 1, 2, ..., N) is calculated as

pi,j = (α · |xti,j − pbesti,j |+ β · |xti,j − gbestj |) · pl, (12)

where pbesti,j and gbestj denote the jth element in pbesti and gbest, respectively, pl denotes the overall

learning rate regarding pbest and gbest, and α and β (α+β = 1) are two parameters controlling the influence

of pbest and gbest on the flipping probability. Then, we can update the current particle position Xi to a

new position Xp
i = (xpi,1, x

p
i,2, ..., x

p
i,N ) with the probability vector Pi. Each xpi,j (j = 1, 2, ..., N) is obtained

as

xpi,j =

1− xti,j , if r < pi,j

xti,j , otherwise

(13)

where r denotes a random value in [0, 1]. The modified PSU mechanism in Eq. (12) is consistent with the

core idea in PSO, i.e., a particle moves following the pbest and gbest with different learning rates (known

as acceleration constants c1 and c2 in PSO). Compared with the standard PSU mechanism, since the p0340

term is not used in Eq.(12), the negative effect of preventing the reduction of features can be avoided in the

modified PSU mechanism. Moreover, the gbest should have more influence on the moving of a particle than

pbest [40]. Thus, we set α = 1/3 and β = 2/3 (i.e., β = 2α) for simplicity. The overall learning rate pl will

be further tuned with experiments.

3.3.3. Mutation operator345

We propose a novel mutation operator to further update particles after the modified PSU mechanism

to enhance the exploration ability of MPBPSO. Generally, three basic operations can be used to update a

feature subset (solution) for an FS task [25]. They are “add a new feature (add operation), “eliminate a

feature (eliminate operation)”, and “add a feature and eliminate another feature (interchange operation)”.

The proposed mutation operator is designed using these three operations. The main idea of this mutation350

operator is one of the three operations is randomly chosen for updating the particle position each time. A

detailed description of this mutation operator is given below.

We consider the particle Xp
i = (xpi,1, x

p
i,2, ..., x

p
i,N ). Let Γ = {j|xpi,j = 1, j = 1, 2, ..., N} and Θ = {j|xpi,j =

0, j = 1, 2, ..., N} be the two sets of indexes denoting the elements of 1 and 0 in Xp
i . The mutation operator
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updates Xp
i to Xm

i = (xmi,1, x
m
i,2, ..., x

m
i,N ) with a mutation rate pm as

Xm
i =


add op(Xp

i ), if r < pa

eliminate op(Xp
i ), if pa ≤ r < pa + pe

interchange op(Xp
i ), if pa + pe ≤ r ≤ pa + pe + pi

(14)

where r is a random value in [0, 1], and pa, pe, and pi (pa+pe+pi = 1) denote the probabilities for conducting

the add (add op), eliminate (eliminate op) and interchange (interchange op) operations, respectively. The

three operations are defined as follows.355

• Add operation randomly selects an index θ ∈ Θ and updates Xp
i with the following equation:

xmi,j =

1− xpi,j , if j = θ

xpi,j , otherwise

, j = 1, 2, ..., N. (15)

• Eliminate operation randomly selects an index γ ∈ Γ and updates Xp
i with the following equation:

xmi,j =

1− xpi,j , if j = γ

xpi,j , otherwise

, j = 1, 2, ..., N. (16)

• Interchange operation randomly selects an index γ ∈ Γ and an index θ ∈ Θ and updates Xp
i with

the following equation:

xmi,j =

1− xpi,j , if j ∈ {γ, θ}

xpi,j , otherwise

, j = 1, 2, ..., N. (17)

The pa, pe, and pi in Eq. (14) are set as the same value of 1/3, which means that the three basic

operations have the same conduction probability. With this setting, the proposed mutation operator shows

the following property:

Theorem 1. Let I(X) be the number of elements of 1 in the particle X. The expected value of I(Xm) in

the mutated particle Xm equals I(X), i.e.,

E[I(Xm)] = I(X). (18)

Proof. For a solution X, it is easily found that the add operation increases I(X) by 1, the eliminate

operation decreases I(X) by 1, and the interchange operation does not change I(X). Therefore, given360
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Fig. 1. Illustration of the proposed solution update mechanism combining the modified PSU mechanism with the mutation
operator. For simplicity, we assume the length of the particle N = 5, α = 1/3, β = 2/3 and pl = 1.

pa = pe = pi and pa +pe +pi = 1, the expected number of elements of 1 in Xm after the mutation operation

is E[I(Xm)] = pa · (I(X) + 1) + pe · (I(X)− 1) + pi · I(X) = I(X).

According to Theorem 1, the proposed mutation operator does not change the expected number of

selected features for the particles in the swarm. This successfully addresses the issue of “preventing the

elimination of features” caused by the p0 term in the standard PSU mechanism of PBPSO as mentioned in365

Section 3.3.2.

Fig. 1 shows an illustration of the proposed solution update mechanism, which first utilizes the modified

PSU mechanism and then uses the proposed mutation operator to update particle positions. The PSU mech-

anism inherits the basic idea of PSO that learns from the pbest and gbest to update particle positions, while

the mutation operator guarantees the exploration performance of the algorithm. The mutation operator370

has an effect similar to p0 in standard PSU. However, the p0 term in the standard PSU mechanism applies

the flipping operation with the same probability on each element in particles, which does not consider the

impact on the change of the number of selected features for particles. Thus, it shows the negative effect of

“preventing the elimination of features” in the late phase of the evolutionary process. In comparison, since

the mutation operator considers the number of elements of 1 and 0 in particles, it maintains the number of375

selected features of the particles after the mutation, which is a good property for solving FS problems.

3.4. Distance-based pbest update (DPU) strategy

In PSO, the pbest of each particle needs to be updated if the new position (denoted by Xm) of the particle

has a better fitness than pbest. The Pareto dominance concept is an option to determine if the new particle

position is better than pbest in MPBPSO. However, different from that in the single objective scenario,380

there is a much higher probability that Xm and pbest are not dominated by each other, i.e., equally good,

in the multi-objective scenario. In this case, we are not able to differentiate between Xm and pbest based

on the Pareto dominance concept. The overall chances for updating pbest will be considerably reduced if
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we do not update pbest with Xm when pbest and Xm are not dominated by each other. This can affect the

evolutionary performance of MPBPSO.385

To cope with the above-mentioned issue, we propose a distance-based measure to compare two solutions

that do not dominate each other. This measure is based on the idea of generational distance (GD) [34],

which can determine the similarity between a solution and the non-dominated set. Given a solution X, the

GD value GD(X) is calculated as its distance to the nearest non-dominated solution. For two solutions Xa

and Xb, we say Xa is better than Xb if GD(Xa) < GD(Xb). Fig. 2a shows an illustration of the distance-390

based measure. We can find that the nearest non-dominated solution for Xa and Xb is the non-dominated

solution X2. Xa is better than Xb because Xa is closer to X2. However, two issues should be addressed

when using this distance measure to update pbest:

1. Directly using the GD measure to compare two solutions may lead to a biased comparison result. As

shown in Fig. 2a, Xd is closer to the non-dominated front than Xc. However, Xc is determined to395

be better than Xd because it has a shorter distance to the nearest non-dominated point X6 (“point”

refers to a solution in the objective space). The reason for this result is that some non-dominated

points are missing between X6 and X9, which yields a non-dominated front with unevenly spread

non-dominated points.

To deal with this problem, we add synthetic non-dominated points to the original non-dominated points400

to achieve a non-dominated front with uniformly spread points. Specifically, a linear interpolation based

solution generating strategy is proposed in MPBPSO to generate the synthetic points. Suppose that

the maximum and minimum values of objective f2 (the number of selected features) obtained by the

non-dominated set Ω are ns and nl respectively, which are two integer values. Then, the synthetic

non-dominated points are generated as {(f1, f2)|f2 ∈ {ns, ns + 1, ..., nl} and f2 /∈ F2(Ω)}, where405

F2(Ω) is the set of f2 values obtained by Ω. The f1 value of the new solution is obtained by linear

interpolation based on the non-dominated solutions in Ω on its two sides. For example, in Fig. 2b,

the two new points X7 and X8 are generated by the linear interpolation based on points X6 and X9.

With the new non-dominated front after the interpolation, Xd is decided to be better than Xc because

Xd has a shorter distance to the nearest non-dominated point than Xc dose.410

2. The ranges of the two objectives in the KQF identification problem are quite different, this can affect

the distance values used to compare two solutions. Therefore, before calculating the distance of a

solution to the nearest non-dominated point, it is required to normalize the objective function values.

For a solution X, we use the min-max normalization method to obtain the normalized objective

function values, i.e.,

fni (X) = fmin
i + (fi(X)− fmin

i )/(fmax
i − fmin

i ),∀i ∈ {1, 2}, (19)
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Fig. 2. Illustration of distance-based solution comparison mechanism.

Algorithm 2: Algorithmic procedure of the distance-based pbest update (DPU) strategy.

Input: A particle position X, the pbest, the non-dominated set Ω;
Output: The updated pbest;

1 if X ≺ pbest then /* X dominates pbest */

2 pbest← X;
3 else if pbest � X then /* pbest do not dominate or equals X */

4 Fs ← Generate synthetic non-dominated points using the linear interpolation based solution
generating strategy;

5 F ← Combine the synthetic non-dominated points Fs with current non-dominated points in Ω;
6 Obtain the normalized objective function values for X, pbest, and each point in F with Eq. (19);
7 GD(X)← Calculate the distance between X and the nearest point in F ;
8 GD(pbest)← Calculate the distance between pbest and the nearest point in F ;
9 if GD(X) < GD(pbest) then

10 pbest← X;
11 end

12 return The pbest ;

where fmax
i and fmin

i denote the maximum and minimum values obtained by solutions in Ω.

Based on the above analysis, we develop the DPU strategy as shown in Algorithm 2. We apply two

conditions to determine the update of pbest. The pbest is updated with X if X dominates pbest. Otherwise,

the distance-based measure is used to compare X and pbest if they do not dominate each other. Specifically,

we first generate a non-dominated front F with more uniformly spread points by the aforementioned linear415

interpolation based solution generating strategy. Then, we obtain the normalized objective function values

for X, pbest, and the points in F , and obtain the distances between X/pbest and the nearest points in F .

Finally, we update pbest with X if X has a smaller distance value than pbest does.
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3.5. Roulette wheel selection based gbest selection (RWGS) strategy

At line 7 of Algorithm 1, a solution from the non-dominated set Ω is selected as the gbest for the current420

iteration. This gbest is used for updating particle positions by the modified PSU mechanism. Properly

selecting the gbest during the iterations is essential to MPBPSO.

The solutions in Ω are spreading in different regions of the non-dominated front. A solution in Ω being

selected as gbest means MPBPSO will allocate computational resources to search around it. To make the

whole non-dominated front efficiently improve during the iterations, it is required to averagely allocate the425

limited computational resources to different regions of the non-dominated front. Therefore, we propose the

RWGS strategy to uniformly select solutions in Ω as the gbest for MPBPSO.

In the RWGS strategy, a parameter ϕ is used to record the number of times being selected as the gbest

for each solution X. First, for a solution X ∈ Ω, the fitness value of selection is defined as

fit(X) = 1/ exp(5ϕ(X)) (20)

where ϕ(X) denotes the ϕ value of X. Then, the selection probability for each X ∈ Ω is computed as

p(X) =
fit(X)∑

Xi∈Ω fit(Xi)
. (21)

Finally, a solution X ∈ Ω is selected as gbest with the probability p(X). According to Eq. (20), if the

difference of the ϕ values of two solutions is 1, the fitness of the solution with a smaller ϕ would be e5 times

(which is a very large value) to the fitness of the other solution. Therefore, the solutions with the smallest430

ϕ value have priority over other solutions being selected as the gbest as determined by Eq.(21). We can

achieve the goal of uniformly selecting the solutions in Ω as gbest during the evolutionary process.

3.6. Sorting solutions

At line 17 of Algorithm 1, the particles in the union swarm Su are sorted based on the goodness of

particle positions in descending order. Hence, MPBPSO can maintain high-quality particles for the next435

iteration. In this paper, we adopt the idea of non-dominated sorting used in NSGA-II [5] to rank the particles

in Su. Specifically, the fast non-dominated sorting strategy is first used to divide the solutions (positions

of particles) in Su into groups of different non-dominated front levels according to the Pareto dominance

concept. A solution with a lower front level is said to have better quality. Then, the crowding distances

for solutions at each front are calculated. The crowding distances can be used to further sort the solutions440

at the same front, and a greater crowding distance value denotes a worse quality of the solution. In [19],

a modified non-dominated sorting strategy was proposed in a modified NSGA-II (MNSGA-II) for FS. This

modified strategy further applies a process to detect and increase the front level of duplicate solutions at
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each front after the standard non-dominated sorting process of NSGA-II. It has been shown to improve the

performance of NSGA-II in FS tasks. Therefore, the modified sorting strategy in [19] is used in MPBPSO445

to sort solutions during the evolutionary process.

4. Experimental design

4.1. Datasets

Four real-world manufacturing process datasets, i.e., ADPN [7], LATEX [7], SPIRA [7], and PAPER [38],

are used to verify the performance of the proposed MPBPSO-IPM method for KQF identification. ADPN450

was collected from the manufacturing process of adiponitrile. The manufacturing process is described by

100 input QFs (features), such as pressure, temperature, and flow, and a quality variable (response variable)

“nickel loss” that reflects the product quality. LATEX was collected from the manufacturing process for

latex. The manufacturing process is described by 117 input QFs, such as temperature, reactive concentration,

monomer input rate, catalyst level, and a quality variable “insoluble products”. SPIRA was collected from455

the fermentation process for manufacturing the antibiotic, i.e., Spiramycine. The manufacturing process is

described by 96 input QFs, including the temperature level, stirring power, and oxygen consumption peaks,

and a quality variable “content of Spiramycine”. PAPER was collected from a paper recycling process. The

manufacturing process is described by 54 QFs, including flow, concentration, and temperature measures

at various time points, and a response variable “chemical oxygen demand load” evaluating the quality of460

wastewater from the recycling process. The original quality variables of these four datasets are continuous. In

[2], the quality variables of these datasets were converted into discrete class labels with two levels according

to the cut points provided by Gauchi and Chagnon [7] and Wold et al [38]. Such a conversion divides

the products into two quality levels, i.e., premium (minority class) and regular (majority class), and thus

classification models can be used. These converted datasets have been widely used in literature for verifying465

the performance of KQF identification methods [2, 19, 20]. The details of the four converted datasets used

in the experiments are shown in Table 1.

Table 1: Details of the manufacturing process datasets.

Dataset
Number of
instances

Number of
features (QFs)

Number of minority class
(premium quality) instances

Number of majority class
(regular quality) instances

ADPN 71 100 20 51
LATEX 262 117 78 184
SPIRA 145 96 50 95
PAPER 384 54 33 351

4.2. Benchmark methods

We use eight benchmark FS methods to verify the proposed MPBPSO-IPM method. They are SFS

[17], SBS [17], CMDPSOFS [39], NSPSOFS [39], NSGAII-IPM [19], MOFS-BDE [47], IDMS-IPM [20], and470
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GADMS-IPM [21]. SFS and SBS are two wrapper methods based on hill-climbing search strategies. SFS

sequentially selects the informative features into the final feature subset, while SBS sequentially eliminates

the non-informative features from the full feature set and the remaining features compose the final feature

subset. CMDPSOFS, NSPSOFS, NSGAII-IPM, MOFS-BDE, IDMS-IPM, and GADMS-IPM are wrap-

per methods based on multi-objective optimization algorithms. CMDPSOFS and NSPSOFS are adapted475

from two multi-objective PSO algorithms, CMDPSO and NSPSO. NSGAII-IPM is an FS method based

on MNSGA-II for KQF identification. MOFS-BDE applies a multi-objective binary DE algorithm to FS,

where a local search step called one bit purifying was used to improve FS performance. IDMS-IPM utilizes

a multi-objective optimization algorithm called IDMS to solve a KQF identification model for unbalanced

production data. GADMS-IPM combines a GA with the DMS algorithm for KQF identification. The six480

multi-objective FS methods as well as our proposed MPBPSO-IPM method treat FS as a multi-objective

optimization problem, i.e., to maximize the classification performance and minimize the number of selected

features. The difference among these methods is that CMDPSOFS, NSPSOFS, and MOFS-BDE adopt the

accuracy rate to measure classification performance while the other multi-objective FS methods utilize the

GM measure to evaluate classification performance. It should be noted that NSGAII-IPM, IDMS-IPM,485

GADMS-IPM, and MPBPSO-IPM adopt IPM to select the best compromise solution (final KQF set) from

the non-dominated solutions found by these multi-objective optimization algorithms, while CMDPSOFS,

NSPSOFS, and MOFS-BDE do not provide a multi-objective decision method to determine the best com-

promise solution. For comparison purposes, we adopt IPM for CMDPSOFS, NSPSOFS, and MOFS-BDE

to determine the final best compromise solution.490

4.3. Parameter settings

In MPBPSO-IPM, the learning rate used in the modified PSU mechanism is set as pl = 0.60 and the

mutation rate is set as pm = 0.85, which are determined with a set of parameter-tuning experiments (see

Appendix A). The parameters in CMDPSOFS and NSPSOFS are set based on [39]. In CMDPSOFS,

the inertia weight w ∈ [0.1, 0.5] and mutation rate pm = 1/N (N is the number of original features).495

In NSPSOFS, the inertia weight w = 0.7298 and acceleration constants c1 = c2 = 1.49618 are used.

CMDPSOFS and NSPSOFS use a real-coded particle X = (x1, x2, ..., xN ) to represent a feature subset. A

threshold parameter θ = 0.6 is used in CMDPSO and NSPSOFS to determine if the jth (j = 1, 2, ..., N)

feature is selected (xj > θ) or not (xj ≤ θ). In NSGAII-IPM, the crossover rate and mutation rate are set

as pc = 0.9 and pm = 1/N as suggested in [19]. In MOFS-BDE, the scale factor is set as F = 0.5 × rand,500

the basic crossover probability is set as CR = 0.4, the parameter defining the frequency of the local search

is Tloc = 5, and the turbulence coefficient is σ = 0.01 as suggested in [47]. In IDMS-IPM, the parameters

controlling the search behavior are set as α0 = 2, β1 = β2 = 0.95 and γ = 1, pm = 1/N as suggested in [20].

In GADMS-IPM, the crossover and mutation rates used in the GA process are pc = 0.9 and pm1 = 1/N ,
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and the two parameters used in the DMS process are β = 0.9 and α0 = 1 as suggested in [21]. In MPBPSO-505

IPM, CMDPSOFS, NSPSOFS, and NSGAII-IPM, the swarm/population size and the maximum number

of iterations are set as K = 100 and T = 100, which results in 10,000 function evaluations. Moreover, the

population size of MOFS-BDE and GADMS-IPM is set as 100 and the stopping criterion in MOFS-BDE,

GADMS-IPM, and IDMS-IPM is set as 10, 000 function evaluations, which makes a fair comparison. In

SFS and SBS, default settings in the Waikato Environment for Knowledge Analysis (Weka) [10] package are510

utilized.

4.4. Experimental configuration

Fig. 3 illustrates the experimental configuration for verifying the FS methods, which includes dataset

division, FS, and test phases. First, 10-fold stratified cross validation (CV) [30] is used to divide the original

dataset into training and test sets. Then, the training set is fed to the FS method to select features (KQFs).515

Finally, the training set with selected features (by eliminating other features) can be further used to establish

a learning model. The model’s classification performance on the test set shows the FS effectiveness. It is

worth noting that the 10-fold CV generates 10 pairs of the training and test sets by dividing the dataset

into 10 folds with equal sample sizes. For each pair, one fold is used as the test set and the other nine folds

are combined as the training set. Therefore, the experiment to evaluate an FS method repeats 10 times in a520

10-fold CV process. The FS methods except for SFS and SBS are based on stochastic search strategies. To

comprehensively verify the performance of these methods, 3 repetitions of the 10-fold CV are implemented

as suggested in [20], which means 30 (10 × 3) repetitions/runs of the experiment for each method on each

dataset are implemented. We adopt the Wilcoxon signed-rank test [37] to compare MPBPSO-IPM with each

benchmark method. Specifically, the 30 experimental repetitions obtain 30 observations of a performance525

metric for a method, which are used to compare the FS performance between two methods. Furthermore,

being wrapper-based FS methods, MPBPSO-IPM and the benchmark methods described in Section 4.2

require a method to evaluate the goodness (i.e., classification performance) of a feature subset during the

FS phase. In this paper, we apply 5-fold CV for feature subset evaluation to avoid FS bias [17]. Different

from the above 10-fold CV, the 5-fold CV is an inner part of the FS method. It aims to further divide530

the training set fed to the FS method into 5 folds and generate 5 pairs of training and test sets, which

are called inner-training and validation sets respectively in this paper for clarification. Then, 5 evaluation

processes are performed with the 5 pairs of inner-training and validation sets to evaluate a feature subset.

In each evaluation process, a learning model is first built with the inner-training set (only the features in

the feature subset are used), and then, the classification results of the learning model on the validation set535

can be obtained. Finally, we can obtain the average value of a classification performance measure (e.g., GM

defined in Eq. (1)) over the 5 evaluation processes to estimate the goodness of the feature subset. Moreover,

we adopt a caching strategy to improve the time efficiency of MPBPSO as that used in [20]. This strategy
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Fig. 3. Illustration of the experimental configuration.

uses a cache to store the objective function values of solutions. For a “new” solution generated during the

iterations, we obtain the objective function values by the cache if this solution has been reached previously540

by the algorithm, otherwise, we adopt the inner 5-fold CV mentioned above to obtain the objective function

values of this solution.

The experiments are implemented on a PC with a 3.6 GHz CPU and 16 GB RAM. The naive Bayesian

(NB) classifier [14], which uses the kernel density estimator to estimate the distribution of continuous

variables, is used as the learning algorithm in the training and test processes for the FS methods for its545

conciseness and effectiveness. A comparison between NB and other typical learning algorithms, including K-

nearest neighbors (KNN), decision trees, and logistic regression classifiers, can be found in the supplementary

material of this paper. The multi-objective FS methods including MPBPSO, CMDPSOFS, NSPSOFS,

NSGAII-IPM, MOFS-BDE IDMS-IPM, and GADMS-IPM are implemented in the Matlab platform. The

NB classifier, SFS, and SBS are implemented in Weka 3.7 [10]. The learning algorithm (i.e., NB classifier)550

used in these multi-objective FS methods is invoked from Weka 3.7. In the NB classifier, the option “-K,

using kernel density estimator” is used. Note that the PAPER dataset is much more unbalanced than other

datasets as the proportion of the number of majority class instances (denoted by #majIns) to the number

of minority class instances #minIns on PAPER is over 10 (351/33). This high imbalance rate may lead

to the trained NB classifier being biased. To address this problem, we adopt a modified NB classifier for555

PAPER as suggested in [21]. This modified classifier uses an up-sampling strategy to balance the training

set by duplicating the minority class instances [#majIns/#minIns − 1] times. The balanced training set

is then employed to train the original NB classifier.
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5. Analysis of KQF identification performance

In this section, the KQF identification performance of MPBPSO-IPM is compared with that of SFS/SBS560

and benchmark multi-objective FS methods. The performance metrics including accuracy, TPR, TNR, GM,

the macro-averaged F1 score (F1), and the number of selected KQFs ( #KQFs) are used to evaluate the

KQF identification performance. Accuracy, TPR, TNR, GM, and the macro-averaged F1 score are typical

classification performance measures. They range [0, 1], the larger the better, reflecting the classification

performance of selected KQFs. Specifically, the macro-averaged F1 score is the average value of the F1565

scores for the minority and majority classes, where the F1 score is defined as the harmonic mean of precision

and recall in terms of a class. In the following text, F1 refers to the macro-averaged F1 score unless otherwise

stated. The number of selected KQFs (smaller is better) denotes the reduction capability for irrelevant or

redundant QFs of the FS methods. Moreover, the computational time of the FS methods is compared.

5.1. Comparison between MPBPSO-IPM and SFS/SBS570

Table 2 shows the results of the KQF identification performance metrics obtained by MPBPSO-IPM,

SFS, and SBS. Note that, for MPBPSO-IPM, the performance metric results of the best compromise solution

selected by IPM from the non-dominated solutions returned by MPBPSO are recorded in the table. In the

table, the mean and standard deviation (mean ± standard deviation) results of these performance metrics

over the 30 repetitions of experiments are shown. The method that obtains the best mean value of each575

performance metric is highlighted in bold for each dataset. We use the Wilcoxon signed-rank test to compare

MPBPSO-IPM with SFS/SBS. The “�” (“↑”) or “�” (“↓”) denotes MPBPSO-IPM obtains a significantly

better or worse result than SFS/SBS at a significance level of α = 0.05 (α = 0.1).

Compared with SFS, MPBPSO-IPM obtains significantly better KQF identification performance on

the datasets except for SPIRA. Specifically, MPBPSO-IPM obtains significantly better results on most580

classification performance metrics (including ACC, TPR, GM, and F1) on ADPN, LATEX, and PAPER.

Meanwhile, on the three datasets, MPBPSO-IPM generally obtains TNR values similar to SFS, and it selects

significantly fewer KQFs than SFS. On SPIRA, it is shown that MPBPSO-IPM obtains significantly lower

ACC, TNR, GM, and F1 values than SFS, which indicates that the KQFs selected by SFS can better predict

the quality of the products in the test set than MPBPSO-IPM.585

Compared with SBS, MPBPSO-IPM obtains better KQF identification performance on all the four

datasets. Specifically, MPBPSO-IPM obtains significantly better ACC, TPR, GM, and F1 results than

SBS at the significance level of α = 0.05 or α = 0.1 on ADPN and SPIRA. MPBPSO-IPM also obtains

significantly better TPR and GM results than SBS at α = 0.05 or α = 0.1 on LATEX and PAPER. No results

indicate MPBPSO-IPM obtains significantly worse classification performance than SBS. These results reveal590

that the KQFs selected by MPBPSO-IPM have a better predictive ability than SBS. From the perspective of
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Table 2: Comparison of KQF identification performance between MPBPSO-IPM and SFS/SBS.

Dataset Metric MPBPSO-IPM SFS SBS

ADPN

ACC (%) 83.83± 8.00 77.32± 13.22 � 75.71± 14.36 �
TPR (%) 88.33± 21.15 75.00± 25.00 � 65.00± 32.02 �
TNR (%) 82.00± 13.65 78.00± 20.88 80.00± 12.65
GM (%) 83.52± 10.05 73.78± 12.54 � 67.51± 27.25 �
F1 (%) 81.44± 8.49 73.87± 12.94 � 70.52± 18.27 �
#KQFs 2.2± 0.4 5.3± 1.3 � 25.8± 9.9 �

LATEX

ACC (%) 79.82± 7.94 78.62± 6.72 76.75± 8.72
TPR (%) 73.15± 16.26 49.82± 17.79 � 63.93± 15.23 �
TNR (%) 82.59± 10.06 90.70± 5.63 � 82.13± 9.36
GM (%) 76.90± 10.00 66.12± 12.12 � 71.92± 10.54 ↑
F1 (%) 76.63± 9.12 71.27± 9.40 � 72.63± 10.10
#KQFs 4.0± 0.7 7.7± 2.9 � 93.8± 15.8 �

SPIRA

ACC (%) 78.48± 10.99 82.81± 5.38 � 73.38± 11.53 �
TPR (%) 70.67± 16.92 74.00± 15.62 62.00± 24.41 ↑
TNR (%) 82.70± 14.51 87.56± 8.90 ↓ 79.22± 11.32
GM (%) 75.55± 11.60 79.72± 7.00 ↓ 66.09± 23.91 ↑
F1 (%) 76.27± 11.50 80.62± 5.86 ↓ 69.70± 15.25 �
#KQFs 3.5± 0.7 3.5± 1.0 51.7± 16.5 �

PAPER

ACC (%) 87.94± 4.11 82.06± 7.40 � 87.99± 5.59
TPR (%) 91.11± 15.20 58.33± 30.28 � 80.83± 20.43 �
TNR (%) 87.65± 4.07 84.36± 7.60 88.88± 7.17
GM (%) 89.00± 8.38 65.36± 25.44 � 83.68± 9.58 �
F1 (%) 75.10± 7.66 63.29± 10.88 � 73.95± 7.72
#KQFs 2.9± 0.4 4.0± 1.8 � 18.2± 9.8 �

feature reduction, MPBPSO-IPM selects a substantially smaller number of KQFs than SBS. On the ADPN,

LATEX, and SPIRA datasets with more than 100 original QFs, MPBPSO-IPM selects less than 10% KQFs

than that of SBS.

Overall, MPBPSO-IPM generally obtains significantly better classification performance while selecting595

a smaller number of KQFs than SFS and SBS on the tested manufacturing process datasets, showing that

MPBPSO-IPM obtains better KQF identification performance than SFS and SBS.

5.2. Comparison between MPBPSO-IPM and benchmark multi-objective FS methods

Table 3 shows the results of the KQF identification performance metrics obtained by MPBPSO-IPM

and benchmark multi-objective FS methods. Note that, for all these multi-objective methods, the perfor-600

mance metric results of the final solution selected by IPM from the non-dominated solutions found by the

multi-objective optimization algorithms are recorded in the table for comparisons. The mean and standard

deviation results over the 30 repetitions of experiments on each performance metric are shown for each

dataset, and the Wilcoxon signed-rank test is used to compare MPBPSO-IPM with each of the benchmark

methods. The notations used in Table 3 are the same as that in Table 2.605
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Table 3: Comparison of KQF identification performance between MPBPSO-IPM and the benchmark multi-objective FS
methods.

Dataset Metric MPBPSO-IPM CMDPSOFS NSPSOFS NSGAII-IPM MOFS-BDE IDMS-IPM GADMS-IPM

ADPN

ACC (%) 83.83± 8.00 79.13± 12.54 79.87± 11.14 79.21± 15.16 ↑ 82.01± 8.68 75.56± 8.53 � 82.00± 8.13
TPR (%) 88.33± 21.15 66.25± 32.21 � 63.89± 32.01 � 73.08± 28.54 � 69.11± 28.68 � 65.28± 29.67 � 83.33± 23.57
TNR (%) 82.00± 13.65 84.07± 15.44 85.98± 13.26 81.66± 16.45 86.89± 11.34 � 79.43± 13.56 ↑ 81.44± 13.30
GM (%) 83.52± 10.05 68.61± 26.74 � 67.72± 26.50 � 73.52± 23.14 � 72.79± 20.84 � 66.80± 21.39 � 80.59± 10.99
F1 (%) 81.44± 8.49 73.17± 16.84 � 73.49± 15.94 ↑ 75.07± 17.12 ↑ 76.35± 12.62 69.51± 11.88 � 79.05± 8.92
#KQFs 2.2± 0.4 6.8± 2.1 � 3.6± 1.2 � 3.1± 0.9 � 2.7± 0.5 � 14.1± 5.2 � 2.2± 0.4

LATEX

ACC (%) 79.82± 7.94 80.24± 8.53 76.75± 7.91 ↑ 79.98± 6.74 80.87± 6.46 78.11± 7.97 80.32± 7.18
TPR (%) 73.15± 16.26 65.60± 21.11 ↑ 55.62± 21.48 � 65.48± 21.63 ↑ 65.33± 21.22 70.36± 14.69 74.35± 18.72
TNR (%) 82.59± 10.06 86.37± 9.39 � 85.58± 8.49 85.91± 7.69 � 87.23± 8.58 � 81.35± 9.44 82.81± 8.94
GM (%) 76.90± 10.00 74.00± 12.98 67.34± 13.84 � 73.54± 12.44 73.75± 12.88 75.10± 9.30 77.39± 10.91
F1 (%) 76.63± 9.12 75.68± 10.88 70.52± 10.88 � 75.18± 9.43 75.91± 9.52 74.70± 8.96 76.99± 8.99
#KQFs 4.0± 0.7 10.9± 2.4 � 5.0± 1.5 � 5.8± 1.9 � 4.0± 0.7 29.9± 4.9 � 4.2± 0.7

SPIRA

ACC (%) 78.48± 10.99 78.34± 8.02 73.96± 10.96 � 73.95± 8.57 � 74.73± 8.40 ↑ 75.18± 10.82 77.95± 9.67
TPR (%) 70.67± 16.92 71.22± 18.04 55.78± 23.08 � 61.00± 19.89 � 61.89± 19.10 � 68.27± 21.27 68.00± 13.27
TNR (%) 82.70± 14.51 82.15± 11.57 83.56± 12.13 80.78± 13.06 81.61± 11.21 78.81± 10.95 83.30± 12.58
GM (%) 75.55± 11.60 75.33± 9.58 64.75± 21.10 � 68.54± 11.07 � 68.86± 15.54 � 72.26± 13.55 74.73± 9.49
F1 (%) 76.27± 11.50 75.94± 8.66 69.22± 14.14 � 70.40± 9.51 � 71.19± 10.41 � 72.66± 12.21 75.65± 9.81
#KQFs 3.5± 0.7 6.3± 1.6 � 3.7± 1.2 4.1± 1.0 � 3.3± 0.8 16.0± 4.8 � 3.8± 0.9 ↑

PAPER

ACC (%) 87.94± 4.11 88.56± 3.60 89.79± 4.01 � 89.48± 4.10 � 89.32± 4.89 ↓ 87.51± 5.04 87.68± 4.18
TPR (%) 91.11± 15.20 69.91± 25.98 � 68.19± 24.02 � 68.47± 25.31 � 65.94± 26.46 � 88.06± 17.17 90.00± 14.34
TNR (%) 87.65± 4.07 90.37± 3.87 � 91.92± 4.28 � 91.49± 4.01 � 91.56± 4.91 � 87.46± 5.26 87.46± 4.27
GM (%) 89.00± 8.38 76.01± 20.68 � 76.75± 18.47 � 75.81± 22.54 � 73.30± 25.59 � 87.21± 9.76 88.40± 7.74
F1 (%) 75.10± 7.66 71.78± 8.89 73.80± 9.91 73.41± 10.42 73.07± 11.77 74.48± 9.46 74.67± 7.52
#KQFs 2.9± 0.4 4.3± 1.3 � 5.7± 2.0 � 4.8± 1.1 � 5.1± 0.7 � 3.1± 0.9 2.8± 0.5

5.2.1. Comparison with CMDPSOFS, NSPSOFS, MOFS-BDE, and NSGAII-IPM

Different from MPBPSO-IPM, CMDPSOFS, NSPSOFS, NSGAII-IPM, and MOFS-BDE adopt a KQF

identification model that maximizes the accuracy and minimizes the number of selected features/QFs. Ac-

cording to Table 3, we can obtain the following results comparing MPBPSO-IPM with these benchmark

methods.610

First, MPBPSO-IPM generally obtains better classification performance than the four benchmark meth-

ods on all the four datasets. Specifically, MPBPSO-IPM obtains ACC results better than or similar to

the four benchmark methods on the datasets except for PAPER. Moreover, MPBPSO-IPM generally ob-

tains significantly better TPR, GM, or F1 values than NSPSOFS and NSGAII-IPM on the four datasets,

obtains significantly better TPR values than CMDPSOFS on the datasets except for SPIRA, and obtains615

significantly better TPR and GM values than MOFS-BDE on the datasets except for LATEX. This denotes

that MPBPSO-IPM performs better than or similar to the four benchmark methods on classification perfor-

mance metrics except for TNR in most cases. In terms of TNR, MPBPSO-IPM obtains significantly worse

results than the four benchmark methods in some cases. However, these benchmark methods generally

obtain substantially worse TPR results than the TNR results. This denotes that the performance of these620

benchmark methods is affected by data imbalance as they tend to classify many more products as regular

quality products (i.e., the majority class), which reduces the classification performance for premium quality

products (i.e., the minority class).

Second, in terms of the #KQF metric, MPBPSO-IPM selects significantly fewer KQFs than CMDPSOFS

and NSGAII-IPM on all the four datasets, selects significantly fewer KQFs than NSPSOFS on three of the625

26



four datasets, and selects significantly fewer KQFs than MOFS-BDE on two of the four datasets. No results

indicate that MPBPSO-IPM selects significantly more KQFs than the four benchmark methods. This

indicates that MPBPSO-IPM has a better feature reduction capability than these benchmark methods.

Overall, the above analysis indicates that MPBPSO-IPM generally obtains better classification performance

while selecting a smaller number of KQFs than the four benchmark methods, showing that MPBPSO-IPM630

outperforms these methods in KQF identification.

5.2.2. Comparison with IDMS-IPM

According to Table 3, we can find the following results comparing MPBPSO-IPM with IDMS-IPM. First,

MPBPSO-IPM generally obtains better classification performance than IDMS-IPM. Specifically, MPBPSO-

IPM obtains significantly better ACC, TPR, GM, and F1 values on ADPN at the significance level of635

α = 0.05, and obtains a significantly better TNR value on ADPN at α = 0.1. In other cases, even though

no evidence shows the difference of comparison results between the two methods is statistically significant,

MPBPSO-IPM still shows better performance since the mean results on the five classification performance

metrics obtained by it are better than IDMS-IPM.

Second, MPBPSO-IPM has better feature reduction performance than IDMS-IPM as MPBPSO-IPM640

obtains a significantly smaller number of KQFs on ADPN, LATEX, and SPIRA. On the three datasets,

IDMS-IPM obtains more than 10 KQFs, while MPBPSO-IPM obtains fewer than 5 KQFs. The above results

show that MPBPSO-IPM has a better KQF identification performance than IDMS-IPM, as MPBPSO-IPM

can select fewer KQFs while obtaining better classification performance.

5.2.3. Comparison with GADMS-IPM645

According to Table 3, we can obtain the following results comparing MPBPSO-IPM with GADMS-

IPM. First, MPBPSO-IPM obtains slightly better classification performance than GADMS-IPM in most

cases. Specifically, MPBPSO-IPM generally obtains better mean ACC, TPR, TNR, GM, and F1 values

than GADM-IPM on ADPN and PAPER, and obtains better mean ACC, TPR, GM, and F1 values than

GADMS-IPM on SPIRA. On LATEX, MPBPSO-IPM obtains slightly lower mean ACC, TPR, TNR, GM,650

and F1 values than GADMS-IPM. Second, in terms of the #KQF metric, MPBPSO-IPM and GADMS-

IPM generally select similar numbers of KQFs on the ADPN, LATEX, and PAPER datasets. On SPIRA,

MPBPSO-IPM obtains significantly fewer KQFs than GADMS-IPM at the significance level of α = 0.1.

It is worth noting that, the test results comparing MPBPSO-IPM with GADMS-IPM are not significantly

different. This reveals that the overall KQF identification performance of the two methods is similar.655

However, as MPBPSO-IPM obtains better mean results on the classification performance metrics and similar

#KQFs results compared to GADMS-IPM on three of the four datasets (i.e., ADPN, SPIRA, and PAPER),

it is shown that MPBPSO-IPM slightly outperforms GADMS-IPM. In Section 6, we will compare the search
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performance of the optimization algorithms, i.e., MPBPSO and GADMS, used in these two methods to

further verify the proposed method.660

5.3. Computational time

Fig. 4 shows the computational time of each FS method on the four datasets. In the figure, the average

computational time consumed by each method over the 30 repetitions of experiments is shown for each

dataset. Note that, we also record the computational time of a new version of MBPSO-IPM (denoted

by MPBPSO-IPM-NC), which does not use the caching strategy to improve time efficiency. Thus, the665

effectiveness of the caching strategy can be analyzed. The following findings can be obtained from Fig. 4:

• First, the caching strategy is effective for improving the time efficiency because the computational

time of MPBPSO-IPM is less than that of MPBPSO-IPM-NC on each dataset. The difference is not

huge, which is probably because the size of the feature subsets selected by MPBPSO-IPM is small.

So, the feature subsets are fast to evaluate, making the reduction of the computational time relatively670

small.

• Second, SFS consumes the least time and SBS consumes the most time on each dataset. The efficiency

of SFS is because the forward search scheme keeps the feature subsets (solutions) being evaluated

during the optimization process to be with small sizes. Seeing that the feature subset evaluation time

in a wrapper approach increases with the increase of the feature subset size, the overall evaluation675

time in SFS can be substantially saved. Since SBS uses a backward search scheme and the sizes of

feature subsets to be evaluated during the optimization process are large, SBS requires a large amount

of time for evaluating feature subsets which increases the overall computational time.

• Third, the computational time of MPBPSO-IPM on each dataset is not significantly different from the

benchmark multi-objective FS methods, i.e., CMDPSOFS, NSPSOFS, NSGAII-IPM, MOFS-BDE,680

IDMS-IPM, and GADMS-IPM, which shows that these methods have similar time complexities.

5.4. Summary

The comparisons in Sections 5.1 - 5.3 have shown that MPBPSO-IPM is effective and efficient for KQF

identification. Summarizing these comparison results, we obtain the following findings.

First, the multi-objective FS methods generally perform more effectively in reducing the number of685

KQFs (features) than the conventional SFS and SBS. According to the #KQFs results in Tables 2 and 3,

the multi-objective FS methods (except for IDMS-IPM) generally obtain a smaller number of KQFs than

SFS and SBS. The following possible reasons can explain this result. On one hand, the multi-objective

FS methods tend to optimize two objectives: a) maximizing the feature subset importance (measured by
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classification performance metrics) and b) minimizing the number of selected features. By adopting the690

second optimization objective, the performance for reducing the number of selected features is improved for

these multi-objective FS methods. On the other hand, SFS and SBS are actually based on hill-climbing

search strategies. From the optimization perspective, the optimization performance of hill-climbing search

strategies is limited, especially when the search space is very large with many local optima. Thus, SFS and

SBS cannot obtain feature subsets with both good classification performance and a small sizes. Note that,695

although IDMS-IPM and MPBPSO-IPM adopt the same multi-objective FS model, IDMS-IPM selects more

KQFs than SFS. The reason is that IDMS-IPM evolves too slowly for obtaining good enough FS results with

the given number of function evaluations (see Section 6 for the detailed analysis of the search performance

of IDMS).

Second, the multi-objective FS (KQF identification) model adopted by MPBPSO-IPM performs effec-700

tively for identifying KQFs on unbalanced manufacturing process data. MPBPSO-IPM, IDMS-IPM, and

GADMS-IPM adopt the same FS model, which adopts GM to evaluate the classification performance of the

feature subsets. In comparison, CMDPSOFS, NSPSOFS, MOFS-BDE, and NSGAII-IPM adopt accuracy to

evaluate feature subsets in the FS model. The comparisons between the methods adopting the two types of

FS models reveal that the GM model can select KQFs with the better overall performance for predicting the705

quality of products (especially for the premium quality products) in the test set than the accuracy model.

This is because GM is a better measure for evaluating the classification performance of different feature
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subsets for unbalanced data than accuracy.

Third, MPBPSO-IPM obtains better KQF identification results than the benchmark FS methods (i.e.,

IDMS-IPM and GADMS-IPM) with the same FS model. MPBPSO-IPM generally obtains better mean re-710

sults of the classification performance metrics than both IDMS-IPM and GADMS-IPM. Moreover, MPBPSO-

IPM selects a substantially smaller number of KQFs than IDMS-IPM on ADPN, LATEX, and SPIRA.

Because IDMS-IPM, GADMS-IPM, and MPBPSO-IPM adopt the same FS model, the difference in KQF

identification performance for these methods is due to the search performance of the adopted optimization

algorithms. In other words, a possible reason that MPBPSO-IPM obtains better final KQF identification715

results is that the optimization algorithm used by MPBPSO-IPM has better search performance than that

of IDMS-IPM and GADMS-IPM. In Section 6, we will further analyze the search performance of these

multi-objective optimization algorithms used in the FS methods.

Finally, MPBPSO-IPM consumes a similar time to the benchmark multi-objective FS methods. This

is because all the multi-objective wrapper-based FS methods evaluate the objective functions for the same720

10,000 times, which leads to similar overall function evaluation time in these methods since function evalu-

ation is the most time-consuming part in a wrapper method. Moreover, the caching strategy that stores the

already evaluated objective functions to save evaluation time is effective. This strategy can be considered a

trick for saving computational time in wrapper-based FS methods.

6. Further analysis of the search performance of MPBPSO725

The comparison results in the previous section have shown that MPBPSO-IPM performs effectively for

KQF identification on unbalanced manufacturing process data. As analyzed, one reason for the effectiveness

of MPBPSO-IPM is that the adopted FS model is effective. To comprehensively verify the effectiveness of

MPBPSO-IPM, it is required to further analyze the search performance of MPBPSO-IPM. All the multi-

objective FS methods including MPBPSO-IPM adopt a two-phase optimization framework where a multi-730

objective optimization algorithm is used first for finding a set of candidate KQF sets and then IPM is used

for selecting the final KQF set. Therefore, the optimization algorithm adopted in each FS method is a key

factor influencing the final KQF identification results. In this section, the search performance of MPBPSO,

the optimization algorithm used in MPBPSO-IPM, will be verified.

6.1. Experimental setting735

Eight benchmark multi-objective optimization algorithms are used. The first six benchmark algorithms

are CMDPSO, NSPSO, MNSGA-II, MOBDE (multi-objective binary DE), IDMS, and GADMS, which are

the multi-objective optimization algorithms used in CMDPSOFS, NSPSOFS, NSGAII-IPM, MOFS-BDE,

IDMS-IPM, and GADMS-IPM. The last two benchmark algorithms are MOEA/D [46] and SPEA2 [50],
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typical MOEAs widely used in many optimization tasks. The search performance of MPBPSO can be740

directly compared with IDMS and GADMS based on the first phase results of MPBPSO-IPM, IDMS-IPM,

and GADMS-IPM from the 30 repetitions of experiments designed in Section 4.4 since they optimize the

same FS model. To compare CMDPSO/NSPSO/MNSGA-II/MOBDE with MPBPSO, we further conduct

experiments by applying CMDPSO, NSPSO, MNSGA-II, and MOBDE to the same FS model as MPBPSO

shown in Eq. (1). Similarly, we conduct experiments for MOEA/D and SPEA2 by solving the FS model745

in Eq. (1) with these two algorithms. The configurations of the additional experiments for CMDPSO,

NSPSO, MNSGA-II, MOBDE, MOEA/D, and SPEA2 are the same as that described in Section 4.4, i.e.,

we repeat 10-fold CV three times which results in 30 repetitions of the experiments. The parameter settings

of CMDPSO, NSPSO, MNSGA-II, and MOBDE are the same as that described in Section 4.3. Similar to

MNSGA-II, the population size, the maximum number of iterations, crossover rate, and mutation rate are750

set as 100, 100, 0.9, and 1/N in MOEA/D and SPEA2. Moreover, in MOEA/D, the Tchebycheff approach is

utilized to convert the multi-objective optimization problem into a number of scalar optimization problems

and the number of neighbors is set as 10 as suggested in [46].

6.2. Search performance metrics

Generally, the search performance of a multi-objective optimization algorithm can be evaluated in terms755

of three criteria (i.e., convergence, uniformity, and spread) [33]. Convergence measures how close the found

non-dominated solutions are to the Pareto front, uniformity measures how uniformly the non-dominated

solutions are distributed, and spread measures how well the non-dominated solutions cover the Pareto front.

There are many search performance metrics proposed in terms of at least one of the three criteria. However,

using only one measure may provide misleading information about the quality of the found solutions in some760

cases [33]. Therefore, to comprehensively compare the search performance between the proposed MPBPSO

algorithm and the benchmark algorithms, we adopt four performance metrics, i.e., hypervolume (HV) [45],

inverted generational distance (IGD) [4], set coverage (SC) [46], and the convergence distance (CD) [20].

The IGD and CD metrics are the smaller the better, and the HV and SC metrics are the larger the better.

HV, IGD, and SC are used for comparing the final search results of these algorithms. HV is defined765

as the hypervolume dominated by the non-dominated solutions found by an optimization algorithm in the

objective space. It measures the convergence, uniformity, and spread properties of the found non-dominated

solutions simultaneously. IGD evaluates the overall distance between non-dominated solutions obtained

by an optimization algorithm and the Pareto-optimal solutions in the objective space. It considers the

convergence and uniformity of the found non-dominated solutions. SC can be used to compare the goodness770

between two non-dominated sets. Given two non-dominated sets Ω and Φ. SC(Ω,Φ) is defined as the

percentage of solutions in Φ that are dominated by or equal to (i.e., covered by) a solution in Ω . In

this paper, we let Φ be the Pareto-optimal solutions and use SC to evaluate the performance of the non-
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dominated set Ω found by an optimization algorithm. Thus, SC can measure the convergence property of

a multi-objective optimization algorithm. CD is used to draw the convergence curves of the optimization775

algorithms as that used in [20]. It is defined as the average of IGD and GD.

As suggested in [21], we first normalize the objective function values fi(X) (i = 1, 2) for each obtained

solution and then calculate HV, IGD, SC, and CD values based on the normalized objective function values.

The min-max normalization method is used where the maximum and minimum values for each objective

function are obtained based on the solutions obtained by all the compared optimization algorithms. The780

calculation of IGD, SC, and CD requires a given Pareto-optimal set. The non-dominated solutions based

on the solutions output by all the compared optimization algorithms are used as the approximating Pareto-

optimal set for the calculation as suggested in [21]. Moreover, we set the reference point as r = (1.1, 1.1) to

calculate HV (Ω, r) as suggested in [45].

6.3. Comparison between MPBPSO and benchmark algorithms785

Table 4 shows the results of HV, IGD, and SC metrics of MPBPSO and the benchmark multi-objective

optimization algorithms. In the table, the mean and standard deviation of each performance metric over the

30 repetitions as well as the statistical test results using the Wilcoxon signed-rank test are shown. The “�”

(“↑”) or “�” (“↓”) denotes MPBPSO outperforms or loses to the benchmark algorithm at a significance

level of α = 0.05 (α = 0.1). In terms of HV, MPBPSO obtains significantly higher HV values than the790

benchmark algorithms except for MOBDE and GADMS on all the four datasets. Compared with MOBDE

and GADMS, MPBPSO obtains significantly higher HV values on ADPN and PAPER. In terms of IGD,

MPBPSO obtains significantly lower IGD values than CMDPSO, NSPSO, IDMS, MOEA/D, and SPEA2

on all the four datasets, obtains significantly lower IGD values than MNSGA-II on three datasets ADPN,

LATEX, and SPIRA, and obtains significantly lower IGD values than GADMS on two datasets ADPN and795

PAPER. Compared with MOBDE, MPBPSO obtains a significantly lower IGD value on ADPN, but obtains

a significantly higher IGD value on SPIRA. In terms of SC, MPBPSO obtains significantly higher SC values

than the benchmark algorithms except for MOBDE and GADMS on all the four datasets. MPBPSO obtains

significantly higher SC values than MOBDE and GADMS on the two datasets ADPN and PAPER. According

to the above results, MPBPSO obtains significantly better HV, IGD, and SC results than the benchmark800

algorithms in most cases. Except that MPBPSO obtains a significantly worse IGD value than MOBDE on

SPIRA, no results show that MPBPSO performs significantly worse than the benchmark algorithms on the

three search performance metrics. Overall, the results in Table 4 indicate that MPBPSO has competitive

search performance.

Fig. 5 shows the convergence curves of MPBPSO and the benchmark algorithms drawn with the CD805

metric. Fig. 5a shows the convergence curves of MPBPSO and the two PSO algorithms, i.e., CMDPSO

and NSPSO. According to the figure, the convergence curves of MPBPSO decrease quickly and become
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Table 4: Comparison of the search performance between MPBPSO and benchmark optimization algorithms.
Metric Dataset MPBPSO CMDPSO NSPSO MNSGA-II MOBDE IDMS GADMS MOEA/D SPEA2

HV

ADPN 1.160± 0.023 0.953± 0.093 � 1.091± 0.061 � 1.083± 0.058 � 1.151± 0.030 � 0.645± 0.202 � 1.139± 0.029 � 1.117± 0.031 � 1.121± 0.036 �
LATEX 1.169± 0.024 0.971± 0.053 � 1.086± 0.059 � 1.099± 0.041 � 1.172± 0.021 0.506± 0.128 � 1.165± 0.018 1.132± 0.034 � 1.100± 0.049 �
SPIRA 1.120± 0.035 0.945± 0.083 � 1.021± 0.074 � 1.075± 0.043 � 1.128± 0.032 0.614± 0.162 � 1.114± 0.036 1.076± 0.044 � 1.087± 0.039 �
PAPER 1.128± 0.025 1.081± 0.034 � 1.085± 0.051 � 1.114± 0.030 � 1.125± 0.026 ↑ 1.089± 0.052 � 1.122± 0.028 � 1.098± 0.043 � 1.111± 0.031 �

IGD

ADPN 0.022± 0.035 0.168± 0.053 � 0.076± 0.042 � 0.091± 0.034 � 0.041± 0.038 � 0.393± 0.166 � 0.045± 0.037 � 0.075± 0.026 � 0.064± 0.033 �
LATEX 0.016± 0.009 0.112± 0.035 � 0.061± 0.028 � 0.050± 0.021 � 0.015± 0.007 0.481± 0.112 � 0.016± 0.009 0.041± 0.014 � 0.052± 0.024 �
SPIRA 0.033± 0.018 0.123± 0.043 � 0.091± 0.040 � 0.060± 0.022 � 0.025± 0.015 � 0.334± 0.120 � 0.036± 0.018 0.068± 0.024 � 0.058± 0.020 �
PAPER 0.026± 0.018 0.062± 0.017 � 0.062± 0.029 � 0.033± 0.019 0.024± 0.015 0.062± 0.029 � 0.037± 0.021 � 0.051± 0.025 � 0.049± 0.026 �

SC

ADPN 0.622± 0.240 0.000± 0.000 � 0.115± 0.186 � 0.057± 0.129 � 0.437± 0.219 � 0.005± 0.026 � 0.409± 0.242 � 0.121± 0.116 � 0.163± 0.180 �
LATEX 0.377± 0.158 0.000± 0.000 � 0.015± 0.050 � 0.026± 0.066 � 0.318± 0.182 0.000± 0.000 � 0.411± 0.163 0.088± 0.102 � 0.023± 0.066 �
SPIRA 0.369± 0.143 0.000± 0.000 � 0.042± 0.078 � 0.056± 0.078 � 0.358± 0.163 0.000± 0.000 � 0.334± 0.148 0.079± 0.100 � 0.119± 0.125 �
PAPER 0.505± 0.124 0.074± 0.109 � 0.134± 0.076 � 0.258± 0.151 � 0.386± 0.139 � 0.142± 0.101 � 0.379± 0.139 � 0.180± 0.106 � 0.280± 0.125 �

lower than that of CMDPSO and NSPSO when the number of function evaluations is larger than around

2,000. CMPSO and NSPSO suffer from the premature convergence problem as their convergence curves

decrease much slower than MPBPSO in the late phase of the evolutionary process. Moreover, we can find810

that the convergence curves of CMDPSO and NSPSO start with a lower point than that of MPBPSO on

each dataset. This is because CMDPSO and NSPSO use a threshold parameter θ = 0.6, which is larger

than 0.5, to determine the selection of features of a particle. The expected number of selected features in

the initial swarm of CMDPSO and NSPSO is around 40%N (N is the number of original features), which is

smaller than that of MPBPSO (around 50%N). This leads to relatively good initial solutions in CMDPSO815

and NSPSO than MPBPSO. Overall, the results in Fig. 5a show that MPBPSO has a better convergence

property than CMDPSO and NSPSO.

Fig. 5b shows the convergence curves of MPBPSO and other non-PSO algorithms, i.e., MNSGA-II,

MOBDE, IDMS, GADMS, MOEA/D, and SPEA2. Compared with MOEA/D, MPBPSO can obtain lower

convergence curves when the number of function evaluations becomes larger than around 1,000. The conver-820

gence curves of MPBPSO and MOEA/D in the early phase of the evolutionary process (before 1,000 function

evaluations) are similar. However, the convergence curves of MOEA/D decrease slower than MPBPSO in

the late phase of the evolutionary process. This denotes that MOEA/D suffers from the premature con-

vergence problem. MNSGA-II and SPEA2 have close convergence speeds and their convergence curves are

substantially higher than that of MPBPSO during the whole evolutionary process on the four datasets. This825

denotes that MPBPSO has substantially better convergence performance than MNSGA-II and SPEA2. For

IDMS, the obtained convergence curves are much higher than other algorithms, especially on the ADPN,

LATEX, and SPIRA datasets, which have more features than PAPER. This shows that IDMS has the lowest

convergence speed among the optimization algorithms. Finally, it is worth noting that MOBDE and GADMS

obtain close convergence curves to MPBPSO in the late phase of the evolutionary process. However, the830

convergence curves of these two algorithms are substantially higher than MPBPSO in the early phase of

the evolutionary process. This means that given a smaller number of allowed function evaluations, MOBDE

and GADMS will obtain substantially worse optimization results than MPBPSO. In other words, for the

FS problems on high dimensional data, MOBDE and GADMS could show substantially worse search results
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Fig. 5. Comparison of convergence performance between MPBPSO and benchmark multi-objective optimization algorithms.

34



than MPBPSO if limited computational resources are given because the two algorithms have a significantly835

lower convergence speed than MPBPSO. Overall, the results in Fig. 5b indicate that MPBPSO shows the

best convergence performance among the non-PSO algorithms.

6.4. Performance evaluation of new components in MPBPSO

The results in Section 6.3 have shown that MPBPSO obtains better search performance than the bench-

mark algorithms. In MPBPSO, we have adopted a new solution update mechanism that combines the840

modified PSU mechanism with the proposed mutation operator. Moreover, the DPU strategy is used to

update pbest, and the RWGS strategy is adopted to determine the gbest at each iteration. To verify the

effectiveness of the new components proposed for MPBPSO, we propose four MPBPSO variants to compare

with MPBPSO. The variants include:

• MPBPSO-U, which adopts the standard PSU mechanism of PBPSO [40] without using the mutation845

operator;

• MPBPSO-M, which uses the standard bitwise mutation operator with a mutation rate of 1/N instead

of the proposed mutation operator used in MPBPSO;

• MPBPSO-P, which updates pbest based on the Pareto dominance concept; and

• MPBPSO-G, which selects the gbest randomly at each iteration instead of using the RWGS strategy.850

Similar to MPBPSO, the search results of the variants are collected from 3 repetitions of the 10-fold CV.

The performance metrics to compare between MPBPSO and each variant are the HV, IGD, and SC metrics

described in Section 6.2.

Table 5 shows the results of the HV, IGD, and SC metrics comparing MPBPSO with each variant.

The mean and standard deviation of each performance metric over the 30 repetitions and the statistical855

significance test results with the Wilcoxon signed-rank test are shown in the table. Similar to the notations

in Table 4, the “�” (“↑”) or “�” (“↓”) denotes MPBPSO-IPM outperforms or lose to the variant at a

significance level of α = 0.05 (α = 0.1). Several findings can be obtained from Table 5:

• First, compared with MPBPSO-U, MPBPSO obtains significantly better HV, IGD, and SC results

on all the four datasets at the significance level of α = 0.05. This denotes that the newly proposed860

solution update mechanism combining the modified PSU mechanism with the mutation operator is

effective in improving the search performance of MPBPSO. The effectiveness of this mechanism can be

explained as follows. The particles can be attracted to the area of the current pbest and gbest with the

modified PSU mechanism, which maintains the fast convergence property of MPBPSO. Furthermore,

the particles can avoid being easily trapped in the local optima with the mutation operator, which865

guarantees the exploration performance of particles.
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Table 5: Comparison of the search performance between MPBPSO and its variants.

Metric Dataset MPBPSO MPBPSO-U MPBPSO-M MPBPSO-P MPBPSO-G

HV

ADPN 1.117± 0.026 0.884± 0.125 � 1.087± 0.038 � 1.102± 0.030 � 1.111± 0.025
LATEX 1.063± 0.044 0.762± 0.077 � 1.041± 0.034 � 1.049± 0.048 � 1.048± 0.045 �
SPIRA 1.046± 0.048 0.874± 0.089 � 1.042± 0.058 1.042± 0.050 1.039± 0.056
PAPER 1.084± 0.045 1.055± 0.044 � 1.074± 0.043 � 1.082± 0.046 1.080± 0.047 ↑

IGD

ADPN 0.022± 0.027 0.174± 0.081 � 0.068± 0.034 � 0.041± 0.032 � 0.028± 0.025
LATEX 0.041± 0.032 0.201± 0.044 � 0.054± 0.028 � 0.048± 0.032 0.049± 0.028
SPIRA 0.037± 0.014 0.139± 0.049 � 0.042± 0.025 0.041± 0.022 0.040± 0.021
PAPER 0.025± 0.019 0.050± 0.024 � 0.031± 0.022 0.023± 0.015 0.028± 0.019

SC

ADPN 0.624± 0.241 0.010± 0.039 � 0.325± 0.207 � 0.428± 0.243 � 0.572± 0.209
LATEX 0.386± 0.171 0.000± 0.000 � 0.233± 0.166 � 0.347± 0.168 0.335± 0.138
SPIRA 0.381± 0.140 0.000± 0.000 � 0.296± 0.183 ↑ 0.367± 0.105 0.402± 0.185
PAPER 0.526± 0.128 0.231± 0.138 � 0.451± 0.198 ↑ 0.473± 0.153 ↑ 0.474± 0.182

• Second, compared with MPBPSO-M, MPBPSO obtains significantly better HV results on ADPN,

LATEX, and PAPER, obtains significantly better IGD results on ADPN and LATEX, and obtains

significantly better SC results on all the four datasets at the significance level of α = 0.05 or 0.1. No

results indicate MPBPSO obtains significantly worse search performance than MPBPSO-M. These870

results denote that the proposed mutation operator in MPBPSO is effective in improving its perfor-

mance. The reason for the effectiveness of the proposed mutation operator can be explained as follows.

One drawback of the standard mutation operator in MPBPSO-M is that more elements in a particle

will change from 0 to 1 than that from 1 to 0 when the elements of 0 are more than the elements of

1 in a solution because the same flipping probability is applied to each element in a particle. This875

means that during the late phase of the evolutionary process, the mutation operator has a negative

effect on reducing the number of selected features/QFs. A similar effect is shown in the standard

PSU mechanism of PBPSO, as the term p0 in Eq. (9) contributes to the flipping probability of each

element in a particle. In comparison, the proposed mutation operator has the property that maintains

the expected number of selected features after the mutation, which is an advantage compared with880

the standard mutation operator for FS problems.

• Third, compared with MPBPSO-P, MPBPSO obtains significantly better HV results on ADPN and

LATEX, obtains a significantly better IGD value on ADPN, and obtains significantly better SC re-

sults on ADPN and PAPER. Considering the mean values of HV, IGD, and SC, MPBPSO obtains

better results than MPBPSO-P in 11 of the 12 cases. These results show that MPBPSO has better885

search performance than MPBPSO-P, which indicates that the proposed DPU strategy is effective in

improving the search performance. Compared with the Pareto dominance concept, the proposed DPU

strategy can compare the current position and the pbest of a particle even if they do not dominate each

other. This makes the update of pbest more reasonable with the DPU strategy in the multi-objective

scenario, which improves the search performance.890
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• Finally, compared with MPBPSO-G, MPBPSO obtains significantly better HV results on LATEX and

PAPER. Moreover, MPBPSO obtains better mean values of HV, IGD, and SC than MPBSO-G in 11

of the 12 cases. This indicates the RWGS strategy can perform more effectively than the random

selection strategy because the computational resources can be more uniformly allocated to different

regions of the non-dominated front by RWGS. Therefore, it is preferred to use the RWGS strategy in895

MPBPSO.

6.5. Discussion

The experimental results in Section 5 have indicated that the proposed MPBPSO-IPM method is effective

for identifying KQFs in complex manufacturing processes. Specifically, the results have shown that the KQFs

identified by MPBPSO-IPM obtain good predictive performance for both premium and regular quality900

products, which indicates good KQF identification performance is obtained by MPBPSO-IPM. Further

analysis in this section has shown that the proposed multi-objective optimization algorithm MPBPSO has

better search performance than benchmark optimization algorithms. These results have shown that both

the optimization algorithm and the KQF identification model applied in MPBPSO-IPM are effective.

The proposed KQF identification method, MPBPSO-IPM, can be very beneficial for effective quality905

control and improvement in real manufacturing processes. On the one hand, KQF identification determines

the key factors required to be strictly monitored and controlled by quality control tools (such as statistical

quality control (SPC)) in the manufacturing processes. Therefore, KQF identification is a pre-processing step

for effective quality control in complex manufacturing processes. On the other hand, KQF identification is

beneficial for continuous product quality improvement. Quality improvement tools such as response surface910

methodology (RSM) can be applied to optimize the identified KQFs, which can improve the quality of

products.

The MPBPSO-IPM method is also beneficial for building an effective and efficient quality prediction

model. Quality prediction models are widely required in modern industries. Quality prediction models

built based on the manufacturing process data can timely predict the quality of products so that quality915

engineers can take accurate and timely measures to control the quality of final products [29]. However,

the massive industrial data collected from the manufacturing processes may contain noisy and redundant

QFs for predicting product quality. The application of a KQF identification method (such as the proposed

MPBPSO-IPM) becomes an indispensable step for building a concise and effective learning model for quality

prediction because it can select a small number of informative KQFs with good discriminative power for920

product quality.
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7. Conclusions

In this paper, we have proposed an FS method called MPBPSO-IPM for identifying KQFs in complex

manufacturing processes that significantly affect the final quality of products. In MPBPSO-IPM, MPBPSO

is used to find a set of non-dominated solutions (candidate KQF sets), and then, the IPM is used to select925

the final KQF set. Specifically, MPBPSO is adapted from a probability-based BPSO algorithm to the multi-

objective KQF identification model with several new components, including the solution update mechanism

combining the modified PSU mechanism with the mutation operator, the DPU strategy, and the RWGS

strategy. The experimental results on four unbalanced datasets show that MPBPSO-IPM is effective for

identifying KQFs in the complex manufacturing processes. Specifically, MPBPSO-IPM identifies a small930

number of KQFs that can well predict the quality of both premium and regular quality products, which

means the irrelevant and redundant QFs are substantially eliminated. We have also conducted experiments

to verify the search performance of MPBPSO. The experimental results indicate that MPBPSO has bet-

ter search performance than several typical multi-objective optimization algorithms including CMDPSO,

NSPSO, MNSGA-II, MOBDE, IDMS, GADMS, MOEA/D, and SPEA2. Further analysis reveals that the935

proposed solution update mechanism for MPBPSO is more effective than the standard PSU mechanism in

optimizing multi-objective FS problems. Moreover, the proposed DPU and RWGS strategies are also effec-

tive in improving the search performance, as they can properly update pbest and select gbest for MPBPSO

in the multi-objective scenario.

The proposed MPBPSO-IPM is an FS method based on the wrapper framework. It is worth extending940

the application of MPBPSO-IPM based on the filter framework of FS, as a filter method is more time efficient

than a wrapper method. This extension would be beneficial for large scale datasets with even more features

and instances than that used in the experiments of this study. Moreover, building a regression model based

FS method for KQFs identification for the data with a continuous response variable (i.e., quality variable)

is one of our future research interests.945

Appendix A. Tuning parameters in MPBPSO

In MPBPSO, two parameters, learning rate pl and mutation rate pm, are potential key factors that affect

its search performance, which further affects the final KQF identification performance of MPBPSO-IPM.

In this section, we design a set of experiments to tune pl and pm for MPBPSO. We will examine a set

Λl = {0.5, 0.6, ..., 1.0} of 6 parameter settings for pl and a set Λm = {0.80, 0.05, ..., 1.00} of 5 parameter

settings for pm, which yields 30 combinations of pl and pm (i.e., {(pl, pm)|∀pl ∈ Λl,∀pm ∈ Λm}). The ADPN

dataset is used in the tuning experiments because it requires less computational time than other datasets

and also has relatively high data dimensionality. With each parameter setting, MPBPSO is applied to the

KQF identification model defined in Eq. (1) to obtain a set of non-dominated solutions. The non-dominated
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solutions are used to evaluate the performance of each parameter setting. The HV metric described in Section

6.2 is adopted as the measure to decide a desirable parameter setting because it is a Pareto-compliant metric

and takes into account the convergence, diversity, and spread properties of the obtained non-dominated

solutions simultaneously [33]. Note that, similar to the experimental setting described in Section 4.4, we

repeat the 10-fold CV process 3 times with each parameter setting as MPBPSO is a stochastic search method,

which yields 30 repetitions of the experiments. Thus, 30 HV values can be obtained with each parameter

setting, which comprehensively evaluates the performance and stability of the algorithm. Furthermore,

considering both the mean and variance of the obtained 30 HV values for each parameter setting, we

convert the 30 HV values into the Taguchi’s signal-to-noise (S/N) ratio [31], which is defined as

S/N = −10 log

(
1

Nr

Nr∑
r=1

( 1

HVr

)2
)

(A.1)

where Nr = 30 is the number of obtained HV values, HVr is the HV value of the rth repetition. A larger

S/N ratio denotes a better overall quality of the obtained HV values for a parameter setting.

The S/N ratio with each parameter setting of pl and pm is shown in Table A.1. We can find that the

learning rate pl should not be set as a too large value as the parameter settings with pl > 0.7 generally950

yield worse results than that with pl ≤ 0.7. Moreover, we can find that setting pm as either 0.85, 0.90, 0.95,

or 1.00 given pl = 0.60 will give relatively good S/N results. So, pl = 0.6 is recommended for MPBPSO

to yield stable and good search results. The best S/N ratio is 0.5059, which is from the parameter setting

pl = 0.60 and pm = 0.85. Therefore, we use pl = 0.60 and pm = 0.85 for MPBPSO in the experiments in

this paper.955

Table A.1: The S/N ratios obtained by different parameter settings of pl and pm.

pl

pm 0.80 0.85 0.90 0.95 1.00

0.50 0.4634 0.4483 0.4555 0.4679 0.4767
0.60 0.4348 0.5059 0.4812 0.4525 0.4856
0.70 0.4512 0.4583 0.4567 0.4371 0.4042
0.80 0.3542 0.4461 0.4260 0.4564 0.4445
0.90 0.4287 0.3481 0.4302 0.4344 0.4075
1.00 0.3938 0.4155 0.4391 0.4083 0.4428
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